Skip to menu Skip to content Skip to footer

Find an expert

1 - 2 of 2 results

Honorary Professor Vicki Chen

Honorary Professor
School of Chemical Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision

Professor Chen graduated with a Bachelor of Science in Chemical Engineering from the Massachusetts Institute of Technology and a Ph.D. in chemical engineering from the University of Minnesota. She has over twenty five years research experience in the areas of membrane separation, gas separation, biocatalytic systems, nanomaterials, and water treatment. She was professor of chemical engineering at the University of New South Wales from 2008 - 2018, the Director of the UNESCO Centre for Membrane Science and Technology from 2006 - 2014 and head of school of chemical engineering fron 2014 - 2018. She is currently on the editorial board for the Journal of Membrane Science and was formerly on the editorial board for Desalination Journal.

She currently holds ARC Discovery grants ("Putting MOFs to Work on Interfaces") and has recently held funding from diverse sources such as CO2CRC, Coal Innovation NSW, ARC Linkage program, and CRC-P (Printed Energy).

Vicki Chen
Vicki Chen

Associate Professor Simon Smart

Affiliate of Dow Centre for Sustain
Dow Centre for Sustainable Engineering Innovation
Faculty of Engineering, Architecture and Information Technology
Affiliate of Australian Research Co
ARC Centre of Excellence-Green Electrochemical Transformation of Carbon Dioxide
Faculty of Engineering, Architecture and Information Technology
Associate Professor
School of Chemical Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision

Overview:

Simon Smart is an Associate Professor in the School of Chemical Engineering at The University of Queensland. He is the UQ Director of the Net Zero Australia study and a Chief Investigator in the ARC Centre of Excellence for Green Electrochemical Transformation of CO2 (GETCO2). Simon completed his BE/BSc and PhD degrees in Chemical Engineering at The University of Queensland in 2003 and 2008 respectively. From 2008 until 2012, Simon was a research fellow in the Films and Inorganic Membrane Laboratory Group of Em.Prof. Joe Diniz da Costa in Chemical Engineering at UQ, where he led inorganic membrane research into hydrogen production, carbon dioxide capture, oxygen production, desalination and membrane reactor technologies. He pioneered metal, metal oxide silica and organosilica membranes, and was amongst the first researchers globally to apply Rapid Thermal Processing (RTP) to inorganic membranes.

Simon has been working with the UQ Dow Centre for Sustainable Engineering Innovation since it’s inception in 2014, where he has focussed on the use of molten metals and molten salts as liquid catalysts for the production of turquoise hydrogen from methane using pyrolysis and CO2 utilisation to produce syngas using dry reforming. He also specialises in broader energy system modelling and decarbonisation pathways, exemplified in projects with the Future Fuels CRC, Net Zero Australia study and GETCO2.

Simon has 147 publications including 9 book chapters and 120 international journal articles at an h-index of 44, with two Highly Cited papers in chemistry and geoscience. He was selected as one of the 2018 Class of Influential Researchers by Industrial & Engineering Chemistry Research. Simon was awarded a Queensland Government Early Career Researcher Fellowship in 2012, and a prestigious UQ Foundation Research Excellence Award for work on 'Low CO2 Iron and Petrochemicals Production' in 2016. Simon was the Secretary for the Membrane Society of Australasia from 2011 - 2013, where he served on the board of directors from 2010 - 2014.

Research Interests:

Simon's research is centred around the sustainable production and use of energy and chemicals - including the development of enabling technologies and processes for the production of clean energy, materials and water. This involves: the design and development of inorganic membranes and hybrid nanocomposite materials for gas and water separation (particularly for carbon capture); the use of molten metals and molten salts as liquid catalysts for low CO2 hydrogen production through methane pyrolysis, CO2 utilisation to produce syngas through dry reforming, and low CO2 iron production via molten iron salts. Simon also specialises in broader energy system modelling and decarbonisation pathways.

Teaching and Learning:

Simon is currently the course coordinator for: Energy Systems, and Sustainable Energy Technologies and Supply Systems. He teaches into Process Systems Analysis.

Simon Smart
Simon Smart