Skip to menu Skip to content Skip to footer

Find an expert

1 - 7 of 7 results

Professor Tom Baldock

Head of School, Civil Engineering
Faculty of Engineering, Architecture and Information Technology
Head of School of Civil Engineering
School of Civil Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision
Media expert

Professor Tom Baldock, B.Eng, Ph.D (Lond), DIC, MIEAust.

****Ph.D. Scholarships in Coastal and Marine Engineering, School of Civil Engineering, University of Queensland, Australia****

Please enquire about forthcoming UQ scholarship opportunities for domestic Australian students (citizens or permanent residents) or international students who are currently in Australia.

Ph.D. projects are available on coastal processes, coral reef hydrodynamics, tsunami impacts, wave energy or a topic of your own

Professor Baldock’s research is primarily in the field of Coastal and Ocean Engineering, but also encompasses renewable energy and higher education. He has published over 120 journal papers and over 80 conference papers, notably in top-rated journals for his discipline (Journal of Fluid Mechanics, Proceedings and Transactions of the Royal Society), and is the most published author in the journal Coastal Engineering over the past decade. He is presently principal supervisor for 6 Ph.D. students, with 18 PhD students graduated since 2007, three of whom were awarded Dean’s awards, and nine have secured T&R or research positions nationally and internationally, one a full Professor. His Ph.D. students have published over 60 journal papers since 2004. They have worked on field and laboratory experiments in the UK, Europe, the USA, in association with international researchers and government agencies. Prof Baldock received a UQ Award for “Excellence in HDR Supervision” in 2017. He is currently working on a major project within the National Reef Restoration and Adaption Program (https://gbrrestoration.org/) focused on the Great Barier Reef.

He has strong national and international collaboration on research on topical issues in coastal engineering and close links with Government and National agencies, which includes consultancy and expert witness services in Marine Engineering. Recent and current relevant research projects include a multi-partner CSIRO Cluster project under the Wealth from Oceans Flagship, investigating tsunami impact on ultra-long submarine pipelines running from the deep ocean up to continental slope and then onshore, ARC Discovery, ARC Linkage and ARC LIEF projects investigating storm surge and wave run-up along the East Australian coast, and four European Union HYDRALAB IV transnational access projects to study beach erosion and recovery processes in large wave flume facilities. He is also working with Geoscience Australia on the Bushfire and Natural Hazards projects, Resilience of Coasts to Clustered storm events and with the Global Change Institute (UQ) on the World Bank project "Capturing Coral Reef Ecosystems Services".

He is a member of the Editorial Board for Coastal Engineering and a member of the Engineers Australia National Committee on Coastal and Ocean Engineering.

He was Chair of the Organising Committee for Coasts and Ports 2017, held in Cairns, June 2017

His primary research interests are in : Swash zone hydrodynamics, Beach face sediment transport, Coral reef hydrodynamics and associated shoreline behaviour, Long wave generation and surf beat, Extreme non-linear waves (freak waves), Storm surge and tsunami hazards.

His current research projects are in the fields of:

  1. Swash Zone hydrodynamics and Sediment Transport
  2. Wave overtopping, including tsunami overtopping
  3. Coral reef hydrodynamics
  4. Impact of sea level rise on coastlines on open and reef-fronted coasts
  5. Surf zone processes and beach erosion
  6. Infrastructure for offshore aquaculture
  7. Wave energy conversion

Google Scholar : https://scholar.google.com.au/citations?hl=en&user=QU14lwEAAAAJ

Top publications

Baldock, T.E., Swan, C. and Taylor, P.H., 1996. A laboratory study of non-linear surface waves on water. Philosophical Transactions of the Royal Society, London, Series A. 354, 1-28. [ERA – A]

Baldock, T. E and Huntley, D. A., 2002. Long wave forcing by the breaking of random gravity waves on a beach. Proceedings of the Royal Society, London, Series A. 458, 2177-2201. [ERA – A*]

Baldock, T.E., 2006. Long wave generation by the shoaling and breaking of transient wave groups on a beach, Proceedings of the Royal Society, London., Series A. 462, 1853–1876. [ERA – A*]

Baldock, T. E., O’ Hare, T. J., and Huntley, D. A.., 2004. Long wave forcing on a barred beach. J. Fluid Mechanics, 503, 321-341. [ERA – A*]

Pritchard, D., Guard, P.A. and Baldock, T.E., 2008. An analytical model for bore-driven run-up. Journal of Fluid Mechanics, 610: 183-193. [ERA – A*]

Baldock, T.E., Peiris, D. and Hogg, A.J., 2012. Overtopping of solitary waves and solitary bores on a plane beach. Proceedings of the Royal Society, London, Series A., doi: 10.1098/rspa.2011.0729. [ERA –A*]

Saunders, M.I. et al., 2014. Interdependency of tropical marine ecosystems in response to climate change. Nature Clim. Change, 4(8): 724-729. [ERA – A*]

Latest publications:

  1. Lancaster, O., Cossu, R., Wilson, M., & Baldock, T. E. (2022). A 3D numerical and experimental parametric study of wave-induced scour around large bluff body structures. Ocean Engineering, 112766. doi:https://doi.org/10.1016/j.oceaneng.2022.112766
  2. Astorga-Moar, A., & Baldock, T. E. (2022). Assessment and optimisation of runup formulae for beaches fronted by fringing reefs based on physical experiments. Coastal Engineering, 176, 104163. doi:https://doi.org/10.1016/j.coastaleng.2022.104163
  3. Thompson, M. E., Matson, B. J., & Baldock, T. E. (2022). A globally verified coastal glare estimation tool. Coastal Engineering, 177, 104190.
  4. Shabani, B., Ware, P. & Baldock, T. E. 2022. Suppression of Wind Waves in the Presence of Swell: A Physical Modeling Study. Journal of Geophysical Research: Oceans, 127, e2021JC018306.
  5. Lancaster, O., Cossu, R., Wuppukondur, A., Astorga Moar, A., Hunter, S., & Baldock, T. E. (2022). Experimental measurements of wave-induced scour around a scaled gravity-based Oscillating Water Column Wave Energy Converter. Applied Ocean Research, 126, 103268. doi:https://doi.org/10.1016/j.apor.2022.103268
  6. Wuppukondur, A. and Baldock, T.E., 2022. Physical and numerical modelling of representative tsunami waves propagating and overtopping in converging channels. Coastal Engineering, p.104120.
  7. Wiegerink, J. J., Baldock, T. E., Callaghan, D. P. & Wang, C. M. 2022. Slosh Suppression Blocks - A concept for mitigating fluid motions in floating closed containment fish pen in high energy environments. Applied Ocean Research, 120, 103068.
  8. Lancaster, O., Cossu, R., Heatherington, C., Hunter, S. & Baldock, T. E. 2022. Field Observations of Scour Behavior around an Oscillating Water Column Wave Energy Converter. Journal of Marine Science and Engineering, 10, 320.
  9. Blenkinsopp, C. E., Baldock, T. E., Bayle, P. M., Foss, O., Almeida, L. P. & Schimmels, S. 2022. Remote Sensing of Wave Overtopping on Dynamic Coastal Structures. Remote Sensing, 14, 513.
  10. Ibrahim, M. S. I. & Baldock, T. E. 2021. Physical and Numerical Modeling of Wave-by-Wave Overtopping along a Truncated Plane Beach. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147, 04021025.
  11. Thompson, M., Zelich, I., Watterson, E. & Baldock, T. E. 2021. Wave Peel Tracking: A New Approach for Assessing Surf Amenity and Analysis of Breaking Waves. Remote Sensing, 13, 3372.
  12. Birrien, F. & Baldock, T. 2021. A Coupled Hydrodynamic-Equilibrium Type Beach Profile Evolution Model. Journal of Marine Science and Engineering, 9, 353.
  13. Lancaster, O., Cossu, R., Boulay, S., Hunter, S. & Baldock, T. E. 2021. Comparative Wave Measurements at a Wave Energy Site with a Recently Developed Low-Cost Wave Buoy (Spotter), ADCP, and Pressure Loggers. Journal of Atmospheric and Oceanic Technology, 38, 1019-1033
  14. Baldock, T.E., Gravois, U., Callaghan, D.P., Davies, G. and Nichol, S., 2021. Methodology for Estimating return intervals for storm demand and dune recession by clustered and non-clustered morphological events. Coastal Engineering, p.103924.
  15. Bayle, P.M., Beuzen, T., Blenkinsopp, C.E., Baldock, T.E. and Turner, I.L., 2021. A new approach for scaling beach profile evolution and sediment transport rates in distorted laboratory models. Coastal Engineering, 163, p.103794.
  16. Blenkinsopp, C.E., Bayle, P.M., Conley, D.C., Masselink, G., Gulson, E., Kelly, I., Almar, R., Turner, I.L., Baldock, T.E., Beuzen, T. and McCall, R.T., 2021. High-resolution, large-scale laboratory measurements of a sandy beach and dynamic cobble berm revetment. Scientific data, 8(1), pp.1-11.
Tom Baldock
Tom Baldock

Associate Professor David Callaghan

Affiliate of Centre for Marine Science
Centre for Marine Science
Faculty of Science
Associate Professor
School of Civil Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision
Media expert

Before joining the University of Queensland, Dave P. Callaghan held positions within industry including Parsons Brinckerhoff and Lawson and Treloar and research sector including Nederlands Instituut voor Ecologie and the University of Queensland. He is an observer of the Queensland Water Panel and active in the newly created Australian Hydraulic Modelling Association. He is the author of a book section and more than 50 other technical documents with applied and research applications. He is a consultant to private and government organisations. He has worked recently with private and government organisations to improve understanding of extreme coastal weather responses. He is recognised for leading edge research in coastal engineering including statistics of extremes, beach erosion from extreme events, physical and biological interactions of salt marshes and coral reefs, lagoon dynamics and wave propagation.

David Callaghan
David Callaghan

Professor Hubert Chanson

Professor
School of Civil Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision
Media expert

Hubert Chanson is Professor of Civil Engineering at the University of Queensland, where he has been since 1990, having previously enjoyed an industrial career for six years. His main field of expertise is environmental fluid mechanics and hydraulic engineering, both in terms of theoretical fundamentals, physical and numerical modelling. He leads a group of 5-10 researchers, largely targeting flows around hydraulic structures, two-phase (gas-liquid and solid-liquid) free-surface flows, turbulence in steady and unsteady open channel flows, using computation, lab-scale experiments, field work and analysis. He has published over 1,250 peer reviewed publications including two dozen of books. He serves on the editorial boards of International Journal of Multiphase Flow, Flow Measurement and Instrumentation, and Environmental Fluid Mechanics, the latter of which he is currently a senior Editor. He chaired the Organisation of the 34th IAHR World Congress in June 2011 and of the 22nd Australasian Fluid Mechanics Conference in December 2020, both held in Brisbane, Australia.

Hubert Chanson
Hubert Chanson

Associate Professor Remo Cossu

Affiliate of Centre for Marine Science
Centre for Marine Science
Faculty of Science
Associate Professor
School of Civil Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Not available for supervision
Media expert

Remo has over 15 years of research experience in water engineering and joined the School of Civil Engineering in February 2016. Remo’s research projects span over a range of topics such as marine renewable energy, hydrodynamics in coastal areas, sediment transport processes, seafloor mapping and environmental engineering.

Remo started his professional career as a Research Associate at the Franzius-Institute for Hydraulic, Waterways and Coastal Engineering at Hannover University, Germany. Remo did his PhD on the hydrodynamics of oceanic gravity and turbidity currents under the influence of Coriolis forces in the Earth Sciences Department, University of Toronto, Canada. He continued his work in Canada as a Postdoctoral Fellow in the Department of Physical and Environmental Sciences at the University of Toronto where he focused on turbulence in coastal boundary layers and sediment transport processes in density currents. Before joining UQ, Remo was working as a Lecturer and Postdoctoral Fellow at the Australian Maritime College (AMC) at the University of Tasmania where he worked on projects in Tasmanian coastal waters (renewable energy, analysis of tidal currents, pipeline surveys) and limnological processes (Lake Ohau, New Zealand). A career highlight was a research trip with a team of sea-ice experts funded by NZARI to Antarctica (Cape Evans, McMurdo Sound) to analyze characteristics of the sea-ice ocean boundary layer using an autonomous underwater vehicle (UBC Gavia AUV).

Remo’s research over the last years has created advances in renewable energy site exploration methods that aims to fill a critical knowledge gap in understanding the suitability of candidate sites and linking local conditions (hydrodynamics, geotechnical aspects) with device design. Remo is involved as a lead researcher on several projects, for instance, the AUSTEn project for tidal energy exploration in Australian coastal waters (http://austen.org.au/) and the recently funded Blue Economy CRC (https://blueeconomycrc.com.au/).

Remo Cossu
Remo Cossu

Associate Professor Badin Gibbes

Associate Professor
School of Civil Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision

Badin is an environmental engineer with over 20 years’ experience in environmental hydrology and water resource engineering. In his current role with the University of Queensland’s School of Civil Engineering he leads a program of research that aims to support the sustainable management of water resources and aquatic ecosystems. This research seeks to quantify water flows and the associated transport of sediment and contaminants in environmental systems ranging from upland rivers and streams to lakes, estuaries and the near-coastal ocean as well as their connected groundwater systems. Badin employs a multi-disciplinary approach that combines the application of innovative environmental monitoring with a range of models to better understand how different factors influence water quality and ecosystem health in these systems.

Prior to joining the University of Queensland, Badin was active in engineering and environmental management roles within various local government, state government, not-for-profit and professional engineering consulting organisations. He applies this past industry experience in his current research activities, which are characterised by close collaboration with water management agencies, to deliver scientific information to support management decisions.

Badin also maintains an active involvement in the University of Queensland’s undergraduate and post-graduate teaching programs where he delivers lectures in various subjects including environmental engineering, hydrology, environmental risk assessment and modelling of surface water and groundwater systems. The experience gained in these roles enables him to communicate complex environmental information with a level of detail appropriate to a range of different audiences from community stakeholders to the engineering profession and regulatory agencies. Badin also supervises a number of post-graduate and undergraduate students who are pursuing research in the area of environmental hydrology and contaminant transport, with many focusing on the implications of forecast climate shifts on water resource management decisions.

Badin Gibbes
Badin Gibbes

Associate Professor Phil Hayes

Affiliate of UQ Centre for Natural Gas
UQ Gas & Energy Transition Research Centre
Faculty of Engineering, Architecture and Information Technology
Associate Professor
UQ Gas & Energy Transition Research Centre
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision
Phil Hayes

Dr David Wainwright

Adjunct Fellow
School of Civil Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision

Dr David Wainwright is an adjunct research fellow with the School of Civil Engineering at the University of Queensland. Apart from his involvement in research, David also has over 20 years of industry experience as a consulting engineer, focusing on coastal engineering, environmental hydraulics, geomorphology and adaptation to climate change - particularly in the coastal zone.

David’s work typically covers coastal engineering design, coastal geomorphology and land use planning. David is also broadly familiar with key aspects of coastal ecology, local government management, property law and community consultation. His key areas of expertise include risk assessment methods for planning in the face of coastal and flooding hazards and sea level rise, engineering design, numerical modelling, and coastal lagoons. David’s PhD thesis investigated numerical modelling methods to inform management of the entrances to coastal lagoons.

He has been a chartered engineer with Engineers Australia since 2001, with membership in the Civil and Environmental Colleges. David provides regular services to that organisation in interviewing individuals applying for chartered membership and acting as a judge for its biannual Engineering Excellence Awards. David is also a conjoint lecturer with the School of Environmental and Life Sciences at the University of Newcastle. David is a director of Salients Pty Limited, a consulting company he established in 2015.

David Wainwright
David Wainwright