Faculty of Engineering, Architecture and Information Technology
Head of School of Civil Engineering
School of Civil Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision
Media expert
Professor Tom Baldock, B.Eng, Ph.D (Lond), DIC, MIEAust.
****Ph.D. Scholarships in Coastal and Marine Engineering, School of Civil Engineering, University of Queensland, Australia****
Please enquire about forthcoming UQ scholarship opportunities for domestic Australian students (citizens or permanent residents) or international students who are currently in Australia.
Ph.D. projects are available on coastal processes, coral reef hydrodynamics, tsunami impacts, wave energy or a topic of your own
Professor Baldock’s research is primarily in the field of Coastal and Ocean Engineering, but also encompasses renewable energy and higher education. He has published over 120 journal papers and over 80 conference papers, notably in top-rated journals for his discipline (Journal of Fluid Mechanics, Proceedings and Transactions of the Royal Society), and is the most published author in the journal Coastal Engineering over the past decade. He is presently principal supervisor for 6 Ph.D. students, with 18 PhD students graduated since 2007, three of whom were awarded Dean’s awards, and nine have secured T&R or research positions nationally and internationally, one a full Professor. His Ph.D. students have published over 60 journal papers since 2004. They have worked on field and laboratory experiments in the UK, Europe, the USA, in association with international researchers and government agencies. Prof Baldock received a UQ Award for “Excellence in HDR Supervision” in 2017. He is currently working on a major project within the National Reef Restoration and Adaption Program (https://gbrrestoration.org/) focused on the Great Barier Reef.
He has strong national and international collaboration on research on topical issues in coastal engineering and close links with Government and National agencies, which includes consultancy and expert witness services in Marine Engineering. Recent and current relevant research projects include a multi-partner CSIRO Cluster project under the Wealth from Oceans Flagship, investigating tsunami impact on ultra-long submarine pipelines running from the deep ocean up to continental slope and then onshore, ARC Discovery, ARC Linkage and ARC LIEF projects investigating storm surge and wave run-up along the East Australian coast, and four European Union HYDRALAB IV transnational access projects to study beach erosion and recovery processes in large wave flume facilities. He is also working with Geoscience Australia on the Bushfire and Natural Hazards projects, Resilience of Coasts to Clustered storm events and with the Global Change Institute (UQ) on the World Bank project "Capturing Coral Reef Ecosystems Services".
He is a member of the Editorial Board for Coastal Engineering and a member of the Engineers Australia National Committee on Coastal and Ocean Engineering.
He was Chair of the Organising Committee for Coasts and Ports 2017, held in Cairns, June 2017
His primary research interests are in : Swash zone hydrodynamics, Beach face sediment transport, Coral reef hydrodynamics and associated shoreline behaviour, Long wave generation and surf beat, Extreme non-linear waves (freak waves), Storm surge and tsunami hazards.
His current research projects are in the fields of:
Swash Zone hydrodynamics and Sediment Transport
Wave overtopping, including tsunami overtopping
Coral reef hydrodynamics
Impact of sea level rise on coastlines on open and reef-fronted coasts
Surf zone processes and beach erosion
Infrastructure for offshore aquaculture
Wave energy conversion
Google Scholar : https://scholar.google.com.au/citations?hl=en&user=QU14lwEAAAAJ
Top publications
Baldock, T.E., Swan, C. and Taylor, P.H., 1996. A laboratory study of non-linear surface waves on water. Philosophical Transactions of the Royal Society, London, Series A. 354, 1-28. [ERA – A]
Baldock, T. E and Huntley, D. A., 2002. Long wave forcing by the breaking of random gravity waves on a beach. Proceedings of the Royal Society, London, Series A. 458, 2177-2201. [ERA – A*]
Baldock, T.E., 2006. Long wave generation by the shoaling and breaking of transient wave groups on a beach, Proceedings of the Royal Society, London., Series A. 462, 1853–1876. [ERA – A*]
Baldock, T. E., O’ Hare, T. J., and Huntley, D. A.., 2004. Long wave forcing on a barred beach. J. Fluid Mechanics, 503, 321-341. [ERA – A*]
Pritchard, D., Guard, P.A. and Baldock, T.E., 2008. An analytical model for bore-driven run-up. Journal of Fluid Mechanics, 610: 183-193. [ERA – A*]
Baldock, T.E., Peiris, D. and Hogg, A.J., 2012. Overtopping of solitary waves and solitary bores on a plane beach. Proceedings of the Royal Society, London, Series A., doi: 10.1098/rspa.2011.0729. [ERA –A*]
Saunders, M.I. et al., 2014. Interdependency of tropical marine ecosystems in response to climate change. Nature Clim. Change, 4(8): 724-729. [ERA – A*]
Latest publications:
Lancaster, O., Cossu, R., Wilson, M., & Baldock, T. E. (2022). A 3D numerical and experimental parametric study of wave-induced scour around large bluff body structures. Ocean Engineering, 112766. doi:https://doi.org/10.1016/j.oceaneng.2022.112766
Astorga-Moar, A., & Baldock, T. E. (2022). Assessment and optimisation of runup formulae for beaches fronted by fringing reefs based on physical experiments. Coastal Engineering, 176, 104163. doi:https://doi.org/10.1016/j.coastaleng.2022.104163
Thompson, M. E., Matson, B. J., & Baldock, T. E. (2022). A globally verified coastal glare estimation tool. Coastal Engineering, 177, 104190.
Shabani, B., Ware, P. & Baldock, T. E. 2022. Suppression of Wind Waves in the Presence of Swell: A Physical Modeling Study. Journal of Geophysical Research: Oceans, 127, e2021JC018306.
Lancaster, O., Cossu, R., Wuppukondur, A., Astorga Moar, A., Hunter, S., & Baldock, T. E. (2022). Experimental measurements of wave-induced scour around a scaled gravity-based Oscillating Water Column Wave Energy Converter. Applied Ocean Research, 126, 103268. doi:https://doi.org/10.1016/j.apor.2022.103268
Wuppukondur, A. and Baldock, T.E., 2022. Physical and numerical modelling of representative tsunami waves propagating and overtopping in converging channels. Coastal Engineering, p.104120.
Wiegerink, J. J., Baldock, T. E., Callaghan, D. P. & Wang, C. M. 2022. Slosh Suppression Blocks - A concept for mitigating fluid motions in floating closed containment fish pen in high energy environments. Applied Ocean Research, 120, 103068.
Lancaster, O., Cossu, R., Heatherington, C., Hunter, S. & Baldock, T. E. 2022. Field Observations of Scour Behavior around an Oscillating Water Column Wave Energy Converter. Journal of Marine Science and Engineering, 10, 320.
Blenkinsopp, C. E., Baldock, T. E., Bayle, P. M., Foss, O., Almeida, L. P. & Schimmels, S. 2022. Remote Sensing of Wave Overtopping on Dynamic Coastal Structures. Remote Sensing, 14, 513.
Ibrahim, M. S. I. & Baldock, T. E. 2021. Physical and Numerical Modeling of Wave-by-Wave Overtopping along a Truncated Plane Beach. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147, 04021025.
Thompson, M., Zelich, I., Watterson, E. & Baldock, T. E. 2021. Wave Peel Tracking: A New Approach for Assessing Surf Amenity and Analysis of Breaking Waves. Remote Sensing, 13, 3372.
Birrien, F. & Baldock, T. 2021. A Coupled Hydrodynamic-Equilibrium Type Beach Profile Evolution Model. Journal of Marine Science and Engineering, 9, 353.
Lancaster, O., Cossu, R., Boulay, S., Hunter, S. & Baldock, T. E. 2021. Comparative Wave Measurements at a Wave Energy Site with a Recently Developed Low-Cost Wave Buoy (Spotter), ADCP, and Pressure Loggers. Journal of Atmospheric and Oceanic Technology, 38, 1019-1033
Baldock, T.E., Gravois, U., Callaghan, D.P., Davies, G. and Nichol, S., 2021. Methodology for Estimating return intervals for storm demand and dune recession by clustered and non-clustered morphological events. Coastal Engineering, p.103924.
Bayle, P.M., Beuzen, T., Blenkinsopp, C.E., Baldock, T.E. and Turner, I.L., 2021. A new approach for scaling beach profile evolution and sediment transport rates in distorted laboratory models. Coastal Engineering, 163, p.103794.
Blenkinsopp, C.E., Bayle, P.M., Conley, D.C., Masselink, G., Gulson, E., Kelly, I., Almar, R., Turner, I.L., Baldock, T.E., Beuzen, T. and McCall, R.T., 2021. High-resolution, large-scale laboratory measurements of a sandy beach and dynamic cobble berm revetment. Scientific data, 8(1), pp.1-11.
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision
Media expert
Before joining the University of Queensland, Dave P. Callaghan held positions within industry including Parsons Brinckerhoff and Lawson and Treloar and research sector including Nederlands Instituut voor Ecologie and the University of Queensland. He is an observer of the Queensland Water Panel and active in the newly created Australian Hydraulic Modelling Association. He is the author of a book section and more than 50 other technical documents with applied and research applications. He is a consultant to private and government organisations. He has worked recently with private and government organisations to improve understanding of extreme coastal weather responses. He is recognised for leading edge research in coastal engineering including statistics of extremes, beach erosion from extreme events, physical and biological interactions of salt marshes and coral reefs, lagoon dynamics and wave propagation.
since 2023: Honorary Associate Professor, School of Mathematics and Physics, The University of Queensland.
2017-2023: Associate Professor, School of Earth and Environmental Sciences, The University of Queensland.
2003-2017: Deputy Director (Software), Earth System Sciences Computational Center (ESSCC) & School of Earth Sciences, The University of Queensland.
2001-2003: Computational Scientist, CSIRO Mathematical and Information Sciences Division, Melbourne, Australia.
2000-2001: Lecturer, Institute of Information and Mathematical Sciences, Massey University at Albany, Auckland, New Zealand.
1996-1999: Research Fellow, Center for Mathematics and its Applications, School of Mathematical Sciences, Australian National University (ANU), Canberra.
1989-1996: Research Scientist, Computing Center, University of Karlsruhe/Germany.
Links:
LinkedIn
researchgate.net
Editor: Geoscientific Model Development Journal (GMD), http://www.geoscientific-model-development.net & EGUsphere https://www.egusphere.net/
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision
Media expert
Dr Mason began at The University of Queensland in late 2014 after holding academic positions at The University of Sydney and QUT. Prior to joining UQ he also worked as a catastrophe risk researcher for the industry-focused research centre, Risk Frontiers at Macquarie University. Matthew’s key areas of interest and expertise lie in the fields of:
Wind Engineering
Stochastic modelling of hazards, including convective storms and tropical cyclones
Probabilistic modelling of structural and infrastructure vulnerability to wind, water and hail
Catastrophe loss modelling for natural hazards
Modelling and observation of the atmospheric boundary layer
Wind tunnel testing and analysis
Disaster insurance
Dr Mason is currently the Chair of the Standards Australia wind loading sub-committee responsible for maintenance of AS/NZS1170.2.