Skip to menu Skip to content Skip to footer

Find an expert

1 - 12 of 12 results

Dr Nasim Amiralian

Senior Research Fellow
Australian Institute for Bioengineering and Nanotechnology
Availability:
Available for supervision
Media expert

I am Group Leader of Bio-inspired Materials Research at the Australian Institute for Bioengineering and Nanotechnology, The University of Queensland. My pioneering research uses a nanocellulose platform technology to develop innovative materials for diverse applications, including biodegradable packaging materials, sustainable antimicrobial materials, protective medical textiles, and biocomposites. The application of nanocellulose for advanced materials is gaining interest internationally, and my vision is to capitalise on this momentum to spearhead research into new sustainable products that will have global impact.

I am a strong advocate for cultural diversity and equity and support staff and students to grow as more effective leaders and create social good.

In recognition of my contribution to the field of nanomaterials engineering and research excellence, I have received a number of awards including; The Eight Australian Women Who Are Shaking up the World Of Science (Marie Claire, 2020), one of Australia’s Top 5 Scientists (ABC/UNSW, 2018), Queensland Women in STEM Prize- judges choice award (2017), Women in Technology Life Sciences and/or Infotech Rising Star Award (2016), AIBN Research Excellence Award (2016), a Class of 2014 Future Leader award and Best poster prize at the Australian Nanotechnology Network ECR Entrepreneurship workshop(2015).

Nasim Amiralian
Nasim Amiralian

Dr Shazed Aziz

Research Fellow
School of Chemical Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision

Experienced materials engineering researcher with proven experience in developing chemically tuned structures for commercial opportunities. My unique skill set spans interfacing technical analysis (morphology, composition, performance, and durability) of sustainable composite materials with economic feasibility and quality system requirements from research and industry associates. I am a team player, and the guiding principles by which I function in all facets of my life include ‘shared values’, ‘shared vision’, ‘complementary expertise’ and ‘diligence’.

Shazed Aziz
Shazed Aziz

Dr Mitch Dunn

Research Fellow
School of Mechanical and Mining Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision
Media expert

Mitch Dunn is a Research Fellow within the UQ Composites group, in the school of Mechanical and Mining Engineering. He has interest in a wide range of material research activities, including functional composite materials, non-destructive evaluation, novel material systems, high-temperature applications, instrumentation, and novel RF/antenna applications in Defence.

Mitch received his PhD from UQ in 2018 for his work on the detection of laminar damage in composite laminates using nonlinear ultrasonic techniques. Recently, he has worked extensively on industry technology development and innovation projects focused around functional composite materials and conformal, load-bearing antenna structures.

Mitch Dunn
Mitch Dunn

Dr James Robert Falconer

Lecturer
School of Pharmacy
Faculty of Health and Behavioural Sciences
Availability:
Available for supervision

Doctor James Falconer has been an academic at the School of Pharmacy, The University of Queensland since June 2015. Dr Falconer was an assistant lecturer, then research & teaching fellow at the School of Pharmacy, the University of Auckland from 2011 – 2015.

In 2007 he was awarded with the Technology for Industry Fellowship (TIF) from the New Zealand Foundation for Research, Science & Technology (FRST) from the NZ Government with joint funding from Pharmaceutical Compounding New Zealand (PCNZ) to complete a PhD under A/Professor Jingyuan Wen and Professor Raid Alany from the University of Auckland, New Zealand for development of a supercritical fluid platform and transdermal delivery of poorly aqueous soluble steriods. As a post-doctoral researcher under A/Professor Zimei Wu and collaboration with Argenta Global in Auckland he worked to help stabilise a veterinary pour-on which resulted in international patents and registered product for cattle. He was then appointed as a lecturer in pharmacy practice and pharmaceutical sciences at The University of Queensland in Brisbane, Australia. Prior to his academic career, he received a BSc in Genetics 1999 and a Masters in Health Sciences (Bioethics) in 2003 under A/Professor Neil Pickering on the anatomy of the GMO debate from the University of Otago, Dunedin, New Zealand. In 2005, he completed a BPharm (Hons) from the University of Auckland and undertook an internship at Middlemore Hospital in 2006, then was employed from 2007 as a ward pharmacist in general surgery and the hospital dispensary and as a community pharmacist - including the 'graveyard' shifts at day/night pharmacies.

Doctor Falconer has established research in supercritical fluid applications for selective extraction as well as in engineering advanced nanoparticulate dosage forms based on lipid and polymeric systems. A backbone to this work is the search for green/er technology to replace organic solvent driven material manufacturing processes and the repurposing of carbon dioxide for good.

James Robert Falconer
James Robert Falconer

Professor Peter Halley

Affiliate of Dow Centre for Sustain
Dow Centre for Sustainable Engineering Innovation
Faculty of Engineering, Architecture and Information Technology
Professor
School of Chemical Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision
Media expert

BIO:

Noun (n): I am a Professor in polymer processing in Chemical Engineering, a chief investigator in Advanced Materials Processing and Manufacturing (AMPAM) centre, a chief investigator/director of external links of the ARC industrial transformation training centre (ITTC) in bioplastics and biocomposites, a chief investigator in food and beverage accellerator (FaBA).and a chief investigator in the solving plastic waste cooperative research centre (spwCRC).

Verb (v): I work at the translational research interface between universities and industry. Specifically my research involves rheology, processing and product design of bio-based materials, polymers and nanocomposite materials. I lead translational research projects in biopolymers and biofluid platforms for agrifood, biomedical and high-value manufacturing sectors which attract government and industry funding; and produce patents, licences. industrial know-how as well as fundamental papers.

History (h): I have worked in industry (SRI international, Sola Optical, Moldflow), have worked in five cooperative research centres (CRCs -Food Packaging, Sugar Innovation, Polymers, Fighting Food Waste, Solving Plastic Waste), have acquired and managed continuous government and industry research projects since 1994, was heavily involved in the spinoff of Plantic Technologies from the CRC food packaging in 2002 (and ongoing research support with them until 2016), and was involved in the research that led to the TenasiTech (TPU nanocomposite) spinoff from UQ in 2007.I am a fellow of the institute of chemical engineers (IChemE) and a fellow of the Royal Australian Chemical Institute (RACI). I am on the editorial board of the Plastics, Rubbers and Composites, Starch, the Journal of Renewable Materials, Green Materials and Functional Composite Materials-Springer-Nature. I have experience on the boards of the UQ Dow Centre, the UQ RTA Centre, and the UQ-HBIS Sustainable Steel Innovation Centre. I won IChemE Shedden Uhde Award and Prize for excellence in Chemical Engineering (2004), the CRC Sugar innovation award (2008), the CRCPolymers Chairman’s award for research and commercialisation (2011), and have received the CRC Association Technology Transfer Award, twice, in 2002 and 2015.

Research:

Current projects are focused on developing new sustainable and bio-based polymers and biochemicals from formulation through to degradation/disposal, understanding processing of nanostructured polymers, developing smarter biopolymers and materials for biomedical, drug delivery, food and high value applications, understanding rheology and processing of a range of polymer, foods and liquids and is involved in new initiatives in circular plastics.

Teaching and Learning:

My teaching has spanned Introduction to Engineering Design, Engineering Thermodynamics, Polymer Engineering, Process Economics, Research Thesis and Engineering Management. I am developing new courses in Sustainability and the Circular Economy. My overall teaching goal is to be a relevant, well organised, enthusiastic and empathetic enabler of learning using multiple teaching and learning modes, and be highly connected to current industrial practices and cutting edge research.

International links

I have been a visiting or invited professor at ENSICAEN-University, Caen, Normandy, University of Nottingham, Queen’s University Belfast, the University of Strasbourg and Institut national des sciences appliquées (INSA) de Lyon in France. I have strong international collaborations with the US Department of Agriculture, Albany, USA; Colorado School of Mines, USA; AnoxKaldnes, Sweden; University of Bradford, University of Warwick, University of Nottingham, University of Sheffield, UK, SCION, NZ; Michigan State University, USA, and many Australian universities.

Peter Halley
Peter Halley

Dr Anthony Halog

Lecturer
School of the Environment
Faculty of Science
Availability:
Available for supervision
Media expert

Dr. Anthony Halog: A Pioneer in Sustainable Systems and Circular Economy

Dr. Anthony Halog is a leading authority in sustainable systems engineering and circular economy, with over 22 years of post-PhD experience in academia and research. His work focuses on integrating life cycle assessment (LCA), systems thinking, and industrial ecology to advance global sustainability efforts. Dr. Halog has successfully led numerous research projects in industrial ecology and sustainable supply chain management, contributing significantly to the United Nations Sustainable Development Goals (UNSDGs) and Planetary Boundaries frameworks.

His prolific career includes over 125 publications that have been widely cited and referenced in policy documents by international bodies such as the United Nations and the European Union. With a strong commitment to mentoring, Dr. Halog has guided numerous PhD candidates and postdoctoral researchers, fostering the next generation of sustainability experts. Since completing his PhD, he has examined numerous theses from various universities in Australia, North America, Africa, and Asia. His experience also extends to reviewing several grant proposals for prestigious funding bodies, including the National Science Foundation in the USA and European funding schemes.

Dr. Anthony Halog has received numerous fellowships and awards throughout his career. Notably, he was awarded fellowships from prestigious institutions such as the OECD, DAAD, and the Japan Society for the Promotion of Science (JSPS). He has held visiting fellowships across the globe, including in the UK, Germany, Japan, and Saudi Arabia, focusing on areas like Circular Economy, Green Hydrogen Policy, and Life Cycle Assessment. Dr. Halog's accolades also include early career fellowships from NSERC (Canada) and JSPS, along with several international research grants and academic scholarships, reflecting his global recognition in sustainability science and engineering.

Key areas of expertise include circular economy, bioeconomy, LCA, sustainable supply chain management, and the application of operations research and optimization in engineering sustainable systems. Dr. Halog’s interdisciplinary approach and international collaborations have positioned him as a thought leader in transitioning to a low-carbon, circular economy.

Anthony Halog
Anthony Halog

Professor Maureen Hassall

Centre Director of Minerals Industr
Minerals Industry Safety and Health Centre
Sustainable Minerals Institute
Professorial Research Fellow and Ce
Sustainable Minerals Institute
Availability:
Available for supervision
Media expert

Maureen Hassall is Professor and Director of the Sustainable Minerals Institute's Industrial Safety and Health Centre at the University of Queensland. Her expertises crosses the fields of industrial risk management, safety engineering and human factors. Maureen works collaboratively with industry professionals to develop better human-centred risk management and safety engineering approaches that improve companies’ operational performance and competitiveness. Maureen also develops and delivers process safety, systems safety engineering, risk management and human factors training, education and expert advice to students and to industry. Her industry-focused research is motivated by 18 years of industry experience working in a number of different countries and in a variety of roles including specialist engineering, line management, organisational change and business performance improvement roles.

Maureen Hassall
Maureen Hassall

David Howard

Adjunct Associate Professor
School of Electrical Engineering and Computer Science
Faculty of Engineering, Architecture and Information Technology
Availability:
Not available for supervision
David Howard

Dr Mingyuan Lu

Senior Lecturer
School of Mechanical and Mining Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision

Dr. Mingyuan Lu was awarded her PhD from The University of Queensland in Febuary 2014. She has previously completed a Masters of Engineering (June 2009, Materials Science and Engineering, Central South University, China), and a Bachelor of Engineering (June 2007, Materials Science and Engineering, Central south University, China).

Mingyuan has more than 10 years’ experience in research, and during this period she has gained extensive experience with material synthesis, mechanical mechanics, and material characterization including nanoindentation, nanoscratching, atomic force microscopy, electron microscopy, and focused ion beam milling (FIB); additionally,she has experience with structural and compositional analysis techniques (Raman, XRD, EDS, DTA, DSC etc.).

Mingyuan's contributions to the field of mechanical and materials engineering are listed below:

Materials mechanics

  • (2015-2016) developed a new and successful FIB-machined micro-cantilever bending technique to study the fracture and interfacial properties of the protective intermetallic coatings on magnesium alloys: this technique can be applied to a wide range of materials, sub-surface structures and multilayered structures. Based on this methodology, they later developed a micro-bridge four-point bending technique. This approach can generate a “stable” interfacial delamination, and thus enables quantitative analysis of interfacial toughness.
  • (2011-2014) developed an indentation-based methodology for assessing the interfacial adhesion of bilayer structures, in a joint project that was funded by WIN Semiconductor Co., Taiwan: the methodology developed has been used to test the reliability of SiN-passivated GaAs semiconductor wafer products.

Materials synthesis and processing

  • (2015-current) developing a selective laser sintering process for the additive manufacturing of porous and biodegradable scaffolds, made from a biopolymer, for bone tissue engineering: this innovative process can produce scaffolds without the use of an artificial 3D model, and the scaffold has a unique interconnected pore architecture and large surface area making it suitable for bone tissue regeneration applications. The promising outcomes of the preliminary study have elicited strong support from UQ; it has received two generous internal grants (a philanthropic grant for an ECR in the field of engineering, and SEED funding) to enable further study in this field. The scaffolds will shortly be tested in a pre-clinical mouse model (funded by SEEM grant) to study biocompatibility and osteoconductivity.
  • (2007-2009) developed high-performance refractory metallic materials using powder metallurgy processes: in this project, they discovered the effect of trace TiC, ZrC Carbide nanoparticles on the mechanical properties, sintering behaviour and microstructure of molybdenum alloys.
Mingyuan Lu
Mingyuan Lu

Dr Luigi Vandi

Senior Lecturer
School of Mechanical and Mining Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision
Media expert

Luigi Vandi is the Co-Deputy Director for the Centre for Advanced Materials Processing and Manufacturing (AMPAM) and a Senior Lecturer in the School of Mechanical and Mining Engineering. He conducts research in materials science, ranging from advanced manufacturing, in-life performance and end-of life conversion to higher value products. He obtained his PhD on hybrid materials from The University of Queensland, and his MSc from the National Polytechnic Institute of Lorraine in France.

His translational research activities have a strong focus on industry relevant projects. His experience in high-performance composites manufacturing for automotive and aerospace applications, includes working at Ferrari F1 Team in Italy, where he was responsible for the manufacture of carbon fibre suspensions and gearbox of the F1 car. In Australia, he played a key role in developing a patented technology as part of a collaborative project with Airbus and CRC-ACS. He is currently responsible for AMPAM’s sustainability theme and leads research in ‘Biocomposites & Circular Economy’. He has secured over $9 million of funding in this field and delivered high impact sustainable solutions. He is the first author of 4 active patents, in the fields of advanced manufacturing, biocomposites and biopolymers, including the development of novel sustainable biocomposite materials that are marine biodegradable biopolymer.

Luigi is driven by solution-based research, and in particular bringing latest innovations in materials science to the benefits of a future circular economy. His goal is to provide an expertise at the crossover between materials science and sustainable development to address the challenges of today’s linear economy.

Luigi lectured 4th year Aerospace Composites (course AERO4300), and 2nd year Engineering Investigation & Statistical Analysis (course CHEE2010)

Luigi Vandi
Luigi Vandi

Dr Yuan Wang

Advance Queensland Industry Researc
School of Mechanical and Mining Engineering
Faculty of Engineering, Architecture and Information Technology
Availability:
Available for supervision
Media expert

Dr Yuan Wang's research interests are in the advanved manufacturing of functional metallic materials. Dr Wang has a strong passion for conducting industry-outcome focussed work, particularly in exploring how cutting-edge technologies such as artificial intelligence can be applied to generate manufacturing innovations. During his PhD, he had also conducted extensive research in thermoelectric energy materials and devices. His reseach has been recognised by the Advance Queensland Industry Research Fellowship and two university research awards.

Dr Wang joined UQ in 2020 firstly as a Research Engineer, then a Postdoctoral Research Fellow, and now an Advance Queensland Industry Research Fellow in the School of Mechanical and Mining Engineering. He is using his fellowship to closely work with industry end-users to translate his research into practical production benefits. His project with a global medical device manufacturing company represents one of the world’s earliest AI-driven manufacturing innovations in the medical device industry. Dr Wang is also involved in diverse responsibilities including teaching, supervision, and service.

Yuan Wang
Yuan Wang

Dr Liwen Zhang

Postdoctoral Research Fellow
Australian Institute for Bioengineering and Nanotechnology
Postdoctoral Research Fellow in Nan
Australian Institute for Bioengineering and Nanotechnology
Availability:
Available for supervision
Liwen Zhang