Skip to menu Skip to content Skip to footer

2011

Journal Article

BEC-BCS crossover in a (p + ip)-wave pairing Hamiltonian coupled to bosonic molecular pairs

Dunning, Clare, Isaac, Phillip S., Links, Jon and Zhao, Shao-You (2011). BEC-BCS crossover in a (p + ip)-wave pairing Hamiltonian coupled to bosonic molecular pairs. Nuclear Physics B, 848 (2), 372-397. doi: 10.1016/j.nuclphysb.2011.03.001

BEC-BCS crossover in a (p + ip)-wave pairing Hamiltonian coupled to bosonic molecular pairs

2011

Journal Article

Exact solutions for a family of spin-boson systems

Lee, Yuan-Harng, Links, Jon and Zhang, Yao-Zhong (2011). Exact solutions for a family of spin-boson systems. Nonlinearity, 24 (7), 1975-1986. doi: 10.1088/0951-7715/24/7/004

Exact solutions for a family of spin-boson systems

2011

Journal Article

Solutions of the Yang-Baxter equation: Descendants of the six-vertex model from the Drinfeld doubles of dihedral group algebras

Finch, P. E., Dancer, K. A., Isaac, P. S. and Links, J. (2011). Solutions of the Yang-Baxter equation: Descendants of the six-vertex model from the Drinfeld doubles of dihedral group algebras. Nuclear Physics Section B, 847 (2), 387-412. doi: 10.1016/j.nuclphysb.2011.01.034

Solutions of the Yang-Baxter equation: Descendants of the six-vertex model from the Drinfeld doubles of dihedral group algebras

2011

Journal Article

Ground-state phase diagram for a system of interacting, D(D-3) non-Abelian anyons

Finch, P. E., Frahm, H. and Links, J. (2011). Ground-state phase diagram for a system of interacting, D(D-3) non-Abelian anyons. Nuclear Physics B, 844 (1), 129-145. doi: 10.1016/j.nuclphysb.2010.11.003

Ground-state phase diagram for a system of interacting, D(D-3) non-Abelian anyons

2010

Journal Article

Bethe ansatz solution of an integrable, non-Abelian anyon chain with D(D-3) symmetry

Campbell, C. W., Dancer, K. A., Isaac, P. S. and Links, J. (2010). Bethe ansatz solution of an integrable, non-Abelian anyon chain with D(D-3) symmetry. Nuclear Physics, Section B, 836 (3), 171-185. doi: 10.1016/j.nuclphysb.2010.04.014

Bethe ansatz solution of an integrable, non-Abelian anyon chain with D(D-3) symmetry

2010

Journal Article

Exact solution of the p + ip pairing Hamiltonian and a hierarchy of integrable models

Dunning, C, Ibanez, M, Links, J, Sierra, G and Zhao, SY (2010). Exact solution of the p + ip pairing Hamiltonian and a hierarchy of integrable models. Journal of Statistical Mechanics: Theory and Experiment, 2010 (8) P08025, P08025-1-P08025-62. doi: 10.1088/1742-5468/2010/08/P08025

Exact solution of the p + ip pairing Hamiltonian and a hierarchy of integrable models

2010

Journal Article

Quantum phase transitions in an interacting atom-molecule boson model

Santos, G., Foerster, A., Links, J., Mattei, E. and Dahmen, S. R. (2010). Quantum phase transitions in an interacting atom-molecule boson model. Physical Review A - Atomic, Molecular, and Optical Physics, 81 (6) 063621, 1-6. doi: 10.1103/PhysRevA.81.063621

Quantum phase transitions in an interacting atom-molecule boson model

2009

Journal Article

Integrable boundary conditions for a non-Abelian anyon chain with D(D3) symmetry

Dancer, K. A., Finch, P. E., Isaac, P. S. and Links, J. (2009). Integrable boundary conditions for a non-Abelian anyon chain with D(D3) symmetry. Nuclear Physics B, 812 (3), 456-469. doi: 10.1016/j.nuclphysb.2008.12.002

Integrable boundary conditions for a non-Abelian anyon chain with D(D3) symmetry

2009

Journal Article

Exactly solvable pairing model for superconductors with p(x)+ip(y)-wave symmetry

Ibanez, Miguel, Links, Jon, Sierra, German and Zhao, Shao-you (2009). Exactly solvable pairing model for superconductors with p(x)+ip(y)-wave symmetry. Physical Review B, 79 (18) 180501, 180501.1-180501.4. doi: 10.1103/PhysRevB.79.180501

Exactly solvable pairing model for superconductors with p(x)+ip(y)-wave symmetry

2009

Journal Article

A Bethe ansatz study of the ground state energy for the repulsive Bose-Hubbard dimer

Links, Jon and Zhao, Shao-You (2009). A Bethe ansatz study of the ground state energy for the repulsive Bose-Hubbard dimer. Journal of Statistical Mechanics: Theory and Experiment, 2009 (3) P03013, 1-16. doi: 10.1088/1742-5468/2009/03/P03013

A Bethe ansatz study of the ground state energy for the repulsive Bose-Hubbard dimer

2009

Journal Article

Universal spectral parameter-dependent Lax operators for the Drinfeld double of the dihedral group D-3

Dancer, K. A. and Links, J. (2009). Universal spectral parameter-dependent Lax operators for the Drinfeld double of the dihedral group D-3. Journal of Physics A - Mathematical and Theoretical, 42 (4) 042002, 134-7. doi: 10.1088/1751-8113/42/4/042002

Universal spectral parameter-dependent Lax operators for the Drinfeld double of the dihedral group D-3

2008

Journal Article

The quantum inverse scattering method with anyonic grading

Batchelor, M. T., Foerster, A., Guan, X.-W., Links, J. R. and Zhou, H.-Q. (2008). The quantum inverse scattering method with anyonic grading. Journal of Physics A: Mathematical and Theoretical, 41 (46) 465201, 465201-1-465201-13. doi: 10.1088/1751-8113/41/46/465201

The quantum inverse scattering method with anyonic grading

2008

Journal Article

Some spectral equivalences between Schrödinger operators

Dunning, C., Hibberd, K. E. and Links, J. R. (2008). Some spectral equivalences between Schrödinger operators. Journal of Physics A: Mathematical and Theoretical, 41 (31) 315211, 315211-1-315211-12. doi: 10.1088/1751-8113/41/31/315211

Some spectral equivalences between Schrödinger operators

2007

Journal Article

Where the Links-Gould invariant first fails to distinguish nonmutant prime knots

De Wit, David and Links, Jon (2007). Where the Links-Gould invariant first fails to distinguish nonmutant prime knots. Journal of Know Theory and Its Ramifications, 16 (8), 1021-1041. doi: 10.1142/S0218216507005658

Where the Links-Gould invariant first fails to distinguish nonmutant prime knots

2007

Journal Article

An algebraic approach to symmetric pre-monoidal statistics

Isaac, P. S., Joyce, W. P. and Links, J. (2007). An algebraic approach to symmetric pre-monoidal statistics. Journal of Algebra and Its Applications, 6 (1), 49-69. doi: 10.1142/S0219498807002065

An algebraic approach to symmetric pre-monoidal statistics

2007

Journal Article

Emergent quantum phases in a heteronuclear molecular Bose-Einstein condensate model

Duncan, Melissa, Foerster, Angela, Links, Jon, Mattei, Eduardo, Oelkers, Norman and Tonel, Ariel Prestes (2007). Emergent quantum phases in a heteronuclear molecular Bose-Einstein condensate model. Nuclear Physics B, 767 (3), 227-249. doi: 10.1016/j.nuclphysb.2006.12.015

Emergent quantum phases in a heteronuclear molecular Bose-Einstein condensate model

2007

Journal Article

Lax operator for the quantised orthosymplectic superalgebra Uq[osp(m\n)]

Dancer, K. A., Gould, M. D. and Links, J. (2007). Lax operator for the quantised orthosymplectic superalgebra Uq[osp(m\n)]. Algebras and Representation Theory, 10 (6), 593-617. doi: 10.1007/s10468-007-9049-2

Lax operator for the quantised orthosymplectic superalgebra Uq[osp(m\n)]

2007

Journal Article

Ground-state properties of the attractive one-dimensional Bose-Hubbard model

Oelkers, N. and Links, J. (2007). Ground-state properties of the attractive one-dimensional Bose-Hubbard model. Physical Review B, 75 (11) 115119, 115119-1-115119-15. doi: 10.1103/PhysRevB.75.115119

Ground-state properties of the attractive one-dimensional Bose-Hubbard model

2006

Journal Article

On quantum phase crossovers in finite systems

Dunning, Clare, Hibberd, Katrina E. and Links, Jon (2006). On quantum phase crossovers in finite systems. Journal of Statistical Mechanics: Theory and Experiment, 2006 (11) P11005, 1-11. doi: 10.1088/1742-5468/2006/11/P11005

On quantum phase crossovers in finite systems

2006

Conference Publication

The two-site Bose-Hubbard model

Links, Jon, Foerster, Angela, Tonel, Ariel Prestes and Santos, Gilberto (2006). The two-site Bose-Hubbard model. Basel, Switzerland: Birkhauser Verlag Ag. doi: 10.1007/s00023-006-0295-3

The two-site Bose-Hubbard model