1987 Journal Article Polynomial-Identities for Simple Lie-SuperalgebrasGould, MD (1987). Polynomial-Identities for Simple Lie-Superalgebras. Journal of the Australian Mathematical Society Series B-Applied Mathematics, 28 (3), 310-327. doi: 10.1017/S0334270000005427 |
1986 Journal Article Unitary-Group Approach to General System Partitioning .2. U(N) Matrix Element Evaluation in a Composite BasisGould, MD (1986). Unitary-Group Approach to General System Partitioning .2. U(N) Matrix Element Evaluation in a Composite Basis. International Journal of Quantum Chemistry, 30 (3), 365-389. doi: 10.1002/qua.560300305 |
1986 Journal Article Unitary-Group Approach to General System Partitioning .1. Calculation of U(N = N1 + N2) - U(N1) X U(N2) Reduced Matrix-Elements and Reduced Wigner CoefficientsGould, MD and Paldus, J (1986). Unitary-Group Approach to General System Partitioning .1. Calculation of U(N = N1 + N2) - U(N1) X U(N2) Reduced Matrix-Elements and Reduced Wigner Coefficients. International Journal of Quantum Chemistry, 30 (3), 327-363. doi: 10.1002/qua.560300304 |
1986 Journal Article Multiplicity-free Wigner coefficients for semisimple Lie-groups. II. A pattern calculus for O(n)Gould, M. D. (1986). Multiplicity-free Wigner coefficients for semisimple Lie-groups. II. A pattern calculus for O(n). Journal of Mathematical Physics, 27 (8), 1964-1979. doi: 10.1063/1.527014 |
1986 Journal Article Para-Fermi Algebras and the Many-Electron Correlation-ProblemGould, MD and Paldus, J (1986). Para-Fermi Algebras and the Many-Electron Correlation-Problem. Physical Review a, 34 (2), 804-814. doi: 10.1103/PhysRevA.34.804 |
1986 Journal Article Multiplicity-Free Wigner Coefficients for Semisimple Lie-Groups .1. the U(N) Pattern CalculusGould, MD (1986). Multiplicity-Free Wigner Coefficients for Semisimple Lie-Groups .1. the U(N) Pattern Calculus. Journal of Mathematical Physics, 27 (8), 1944-1963. doi: 10.1063/1.527013 |
1986 Journal Article A Projection Based Approach to the Clebsch-Gordan Multiplicity Problem for Compact Semisimple Lie-Groups .1. General FormalismEdwards, SA and Gould, MD (1986). A Projection Based Approach to the Clebsch-Gordan Multiplicity Problem for Compact Semisimple Lie-Groups .1. General Formalism. Journal of Physics A-Mathematical and General, 19 (9), 1523-1529. doi: 10.1088/0305-4470/19/9/022 |
1986 Journal Article A Projection Based Approach to the Clebsch-Gordan Multiplicity Problem for Compact Semisimple Lie-Groups .3. the Classical LimitGould, MD and Edwards, SA (1986). A Projection Based Approach to the Clebsch-Gordan Multiplicity Problem for Compact Semisimple Lie-Groups .3. the Classical Limit. Journal of Physics A-Mathematical and General, 19 (9), 1537-1544. doi: 10.1088/0305-4470/19/9/024 |
1986 Journal Article A Projection Based Approach to the Clebsch-Gordan Multiplicity Problem for Compact Semisimple Lie-Groups .2. Application to U(N)Edwards, SA and Gould, MD (1986). A Projection Based Approach to the Clebsch-Gordan Multiplicity Problem for Compact Semisimple Lie-Groups .2. Application to U(N). Journal of Physics A-Mathematical and General, 19 (9), 1531-1536. doi: 10.1088/0305-4470/19/9/023 |
1985 Journal Article CorrectionGould, MD (1985). Correction. International Journal of Quantum Chemistry, 27 (6), 787-801. doi: 10.1002/qua.560270613 |
1985 Journal Article CORRECTIONGOULD, MD (1985). CORRECTION. International Journal of Quantum Chemistry, 27 (6), 787-801. doi: 10.1002/qua.560270613 |
1985 Journal Article A Projection-Based Solution to the Sp(2N) State Labeling ProblemGould, MD and Kalnins, EG (1985). A Projection-Based Solution to the Sp(2N) State Labeling Problem. Journal of Mathematical Physics, 26 (7), 1446-1457. doi: 10.1063/1.526908 |
1985 Journal Article Characteristic Identities for Semi-Simple Lie-AlgebrasGould, MD (1985). Characteristic Identities for Semi-Simple Lie-Algebras. Journal of the Australian Mathematical Society Series B-Applied Mathematics, 26 (JAN), 257-283. doi: 10.1017/S0334270000004501 |
1984 Journal Article Tensor-Operators and Projection Techniques in Infinite Dimensional Representations of Semi-Simple Lie-AlgebrasGould, MD (1984). Tensor-Operators and Projection Techniques in Infinite Dimensional Representations of Semi-Simple Lie-Algebras. Journal of Physics A-Mathematical and General, 17 (1), 1-17. doi: 10.1088/0305-4470/17/1/006 |
1984 Journal Article Unitary-Group Approach to the Many-Electron Problem .1. Matrix Element Evaluation and Shift-OperatorsGould, MD and Chandler, GS (1984). Unitary-Group Approach to the Many-Electron Problem .1. Matrix Element Evaluation and Shift-Operators. International Journal of Quantum Chemistry, 25 (3), 553-601. doi: 10.1002/qua.560250311 |
1984 Journal Article Enveloping Algebra Annihilators and Projection Techniques for Finite-Dimensional Cyclic Modules of a Semisimple Lie-AlgebraGould, MD and Edwards, SA (1984). Enveloping Algebra Annihilators and Projection Techniques for Finite-Dimensional Cyclic Modules of a Semisimple Lie-Algebra. Journal of Mathematical Physics, 25 (10), 2848-2855. doi: 10.1063/1.526033 |
1984 Journal Article Unitary-Group Approach to the Many-Electron Problem .3. Matrix-Elements of Spin-Dependent HamiltoniansGould, MD and Chandler, GS (1984). Unitary-Group Approach to the Many-Electron Problem .3. Matrix-Elements of Spin-Dependent Hamiltonians. International Journal of Quantum Chemistry, 25 (6), 1089-1109. doi: 10.1002/qua.560250613 |
1984 Journal Article A Spin-Dependent Unitary-Group Approach to Many-Electron SystemsGould, MD and Chandler, GS (1984). A Spin-Dependent Unitary-Group Approach to Many-Electron Systems. International Journal of Quantum Chemistry, 26 (4), 441-455. doi: 10.1002/qua.560260403 |
1984 Journal Article Unitary-Group Approach to the Many-Electron Problem .2. Adjoint Tensor-Operators for U(N)Gould, MD and Chandler, GS (1984). Unitary-Group Approach to the Many-Electron Problem .2. Adjoint Tensor-Operators for U(N). International Journal of Quantum Chemistry, 25 (3), 603-633. doi: 10.1002/qua.560250312 |
1981 Journal Article On the Matrix-Elements of the U(N) GeneratorsGould, MD (1981). On the Matrix-Elements of the U(N) Generators. Journal of Mathematical Physics, 22 (1), 15-22. doi: 10.1063/1.524749 |