Skip to menu Skip to content Skip to footer

2023

Journal Article

XG-BoT: an explainable deep graph neural network for botnet detection and forensics

Lo, Wai Weng, Kulatilleke, Gayan, Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). XG-BoT: an explainable deep graph neural network for botnet detection and forensics. Internet of Things, 22 100747, 100747. doi: 10.1016/j.iot.2023.100747

XG-BoT: an explainable deep graph neural network for botnet detection and forensics

2023

Journal Article

HARBIC: Human activity recognition using bi-stream convolutional neural network with dual joint time-frequency representation

Hosseininoorbin, Seyedehfaezeh, Layeghy, Siamak, Kusy, Brano, Jurdak, Raja and Portmann, Marius (2023). HARBIC: Human activity recognition using bi-stream convolutional neural network with dual joint time-frequency representation. Internet of Things, 22 100816, 1-17. doi: 10.1016/j.iot.2023.100816

HARBIC: Human activity recognition using bi-stream convolutional neural network with dual joint time-frequency representation

2023

Journal Article

Exploring Edge TPU for deep feed-forward neural networks

Hosseininoorbin, Seyedehfaezeh, Layeghy, Siamak, Kusy, Brano, Jurdak, Raja and Portmann, Marius (2023). Exploring Edge TPU for deep feed-forward neural networks. Internet of Things, 22 100749, 1-16. doi: 10.1016/j.iot.2023.100749

Exploring Edge TPU for deep feed-forward neural networks

2023

Other Outputs

NF-UNSW-NB15

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). NF-UNSW-NB15. The University of Queensland. (Dataset) doi: 10.48610/5d0832d

NF-UNSW-NB15

2023

Other Outputs

NF-ToN-IoT-v2

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). NF-ToN-IoT-v2. The University of Queensland. (Dataset) doi: 10.48610/38a2d07

NF-ToN-IoT-v2

2023

Other Outputs

NF-UQ-NIDS

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). NF-UQ-NIDS. The University of Queensland. (Dataset) doi: 10.48610/69b5a53

NF-UQ-NIDS

2023

Other Outputs

CIC-ToN-IoT

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). CIC-ToN-IoT. The University of Queensland. (Dataset) doi: 10.48610/f6884ce

CIC-ToN-IoT

2023

Other Outputs

NF-BoT-IoT-v2

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). NF-BoT-IoT-v2. The University of Queensland. (Dataset) doi: 10.48610/ec73920

NF-BoT-IoT-v2

2023

Other Outputs

NF-BoT-IoT

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). NF-BoT-IoT. The University of Queensland. (Dataset) doi: 10.48610/62e6d80

NF-BoT-IoT

2023

Other Outputs

CIC-BoT-IoT

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marus (2023). CIC-BoT-IoT. The University of Queensland. (Dataset) doi: 10.48610/c80fccd

CIC-BoT-IoT

2023

Other Outputs

NF-UNSW-NB15-v2

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). NF-UNSW-NB15-v2. The University of Queensland. (Dataset) doi: 10.48610/ffbb0c1

NF-UNSW-NB15-v2

2023

Other Outputs

NF-ToN-IoT

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). NF-ToN-IoT. The University of Queensland. (Dataset) doi: 10.48610/2fa2ed6

NF-ToN-IoT

2023

Other Outputs

NF-UQ-NIDS-v2

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). NF-UQ-NIDS-v2. The University of Queensland. (Dataset) doi: 10.48610/631a24a

NF-UQ-NIDS-v2

2023

Conference Publication

DOC-NAD: A hybrid deep one-class classifier for network anomaly detection

Sarhan, Mohanad, Kulatilleke, Gayan, Lo, Wai Weng, Layeghy, Siamak and Portmann, Marius (2023). DOC-NAD: A hybrid deep one-class classifier for network anomaly detection. 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW), Bangalore, India, 1 - 4 May 2023. Piscataway, NJ, United States: IEEE. doi: 10.1109/ccgridw59191.2023.00016

DOC-NAD: A hybrid deep one-class classifier for network anomaly detection

2023

Journal Article

From zero-shot machine learning to zero-day attack detection

Sarhan, Mohanad, Layeghy, Siamak, Gallagher, Marcus and Portmann, Marius (2023). From zero-shot machine learning to zero-day attack detection. International Journal of Information Security, 22 (4), 947-959. doi: 10.1007/s10207-023-00676-0

From zero-shot machine learning to zero-day attack detection

2023

Journal Article

Inspection-L: self-supervised GNN node embeddings for money laundering detection in bitcoin

Lo, Wai Weng, Kulatilleke, Gayan K., Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). Inspection-L: self-supervised GNN node embeddings for money laundering detection in bitcoin. Applied Intelligence, 53 (16), 1-12. doi: 10.1007/s10489-023-04504-9

Inspection-L: self-supervised GNN node embeddings for money laundering detection in bitcoin

2023

Other Outputs

NF-CSE-CIC-IDS2018

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). NF-CSE-CIC-IDS2018. The University of Queensland. (Dataset) doi: 10.48610/b9ed88b

NF-CSE-CIC-IDS2018

2023

Other Outputs

NF-CSE-CIC-IDS2018-v2

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). NF-CSE-CIC-IDS2018-v2. The University of Queensland. (Dataset) doi: 10.48610/e9636b7

NF-CSE-CIC-IDS2018-v2

2022

Conference Publication

Network intrusion detection system in a light bulb

Manocchio, Liam Daly, Layeghy, Siamak and Portmann, Marius (2022). Network intrusion detection system in a light bulb. 32nd International Telecommunication Networks and Applications Conference (ITNAC), Wellington, New Zealand, 30 November- 2 December 2022. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers. doi: 10.1109/itnac55475.2022.9998371

Network intrusion detection system in a light bulb

2022

Journal Article

Evaluating Standard Feature Sets Towards Increased Generalisability and Explainability of ML-Based Network Intrusion Detection

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2022). Evaluating Standard Feature Sets Towards Increased Generalisability and Explainability of ML-Based Network Intrusion Detection. Big Data Research, 30 100359, 1-9. doi: 10.1016/j.bdr.2022.100359

Evaluating Standard Feature Sets Towards Increased Generalisability and Explainability of ML-Based Network Intrusion Detection