Skip to menu Skip to content Skip to footer

2021

Journal Article

QSMxT: Robust masking and artifact reduction for quantitative susceptibility mapping

Stewart, Ashley Wilton, Robinson, Simon Daniel, O’Brien, Kieran, Jin, Jin, Widhalm, Georg, Hangel, Gilbert, Walls, Angela, Goodwin, Jonathan, Eckstein, Korbinian, Tourell, Monique, Morgan, Catherine, Narayanan, Aswin, Barth, Markus and Bollmann, Steffen (2021). QSMxT: Robust masking and artifact reduction for quantitative susceptibility mapping. Magnetic Resonance in Medicine, 87 (3), 1289-1300. doi: 10.1002/mrm.29048

QSMxT: Robust masking and artifact reduction for quantitative susceptibility mapping

2021

Journal Article

Deep learning in magnetic resonance image reconstruction

Chandra, Shekhar S., Bran Lorenzana, Marlon, Liu, Xinwen, Liu, Siyu, Bollmann, Steffen and Crozier, Stuart (2021). Deep learning in magnetic resonance image reconstruction. Journal of Medical Imaging and Radiation Oncology, 65 (5) 1754-9485.13276, 564-577. doi: 10.1111/1754-9485.13276

Deep learning in magnetic resonance image reconstruction

2021

Journal Article

Centering inclusivity in the design of online conferences—An OHBM–Open Science perspective

Levitis, Elizabeth, van Praag, Cassandra D Gould, Gau, Rémi, Heunis, Stephan, DuPre, Elizabeth, Kiar, Gregory, Bottenhorn, Katherine L, Glatard, Tristan, Nikolaidis, Aki, Whitaker, Kirstie Jane, Mancini, Matteo, Niso, Guiomar, Afyouni, Soroosh, Alonso-Ortiz, Eva, Appelhoff, Stefan, Arnatkeviciute, Aurina, Atay, Selim Melvin, Auer, Tibor, Baracchini, Giulia, Bayer, Johanna M M, Beauvais, Michael J S, Bijsterbosch, Janine D, Bilgin, Isil P, Bollmann, Saskia, Bollmann, Steffen, Botvinik-Nezer, Rotem, Bright, Molly G, Calhoun, Vince D, Chen, Xiao ... Maumet, Camille (2021). Centering inclusivity in the design of online conferences—An OHBM–Open Science perspective. GigaScience, 10 (8) giab051. doi: 10.1093/gigascience/giab051

Centering inclusivity in the design of online conferences—An OHBM–Open Science perspective

2021

Journal Article

Brainhack: Developing a culture of open, inclusive, community-driven neuroscience

Gau, Rémi, Noble, Stephanie, Heuer, Katja, Bottenhorn, Katherine L., Bilgin, Isil P., Yang, Yu-Fang, Huntenburg, Julia M., Bayer, Johanna M.M., Bethlehem, Richard A.I., Rhoads, Shawn A., Vogelbacher, Christoph, Borghesani, Valentina, Levitis, Elizabeth, Wang, Hao-Ting, Van Den Bossche, Sofie, Kobeleva, Xenia, Legarreta, Jon Haitz, Guay, Samuel, Atay, Selim Melvin, Varoquaux, Gael P., Huijser, Dorien C., Sandström, Malin S., Herholz, Peer, Nastase, Samuel A., Badhwar, AmanPreet, Dumas, Guillaume, Schwab, Simon, Moia, Stefano, Dayan, Michael ... Zuo, Xi-Nian (2021). Brainhack: Developing a culture of open, inclusive, community-driven neuroscience. Neuron, 109 (11), 1769-1775. doi: 10.1016/j.neuron.2021.04.001

Brainhack: Developing a culture of open, inclusive, community-driven neuroscience

2021

Journal Article

Improving FLAIR SAR efficiency at 7T by adaptive tailoring of adiabatic pulse power through deep learning estimation

Abbasi‐Rad, Shahrokh, O’Brien, Kieran, Kelly, Samuel, Vegh, Viktor, Rodell, Anders, Tesiram, Yasvir, Jin, Jin, Barth, Markus and Bollmann, Steffen (2021). Improving FLAIR SAR efficiency at 7T by adaptive tailoring of adiabatic pulse power through deep learning estimation. Magnetic Resonance in Medicine, 85 (5), 2462-2476. doi: 10.1002/mrm.28590

Improving FLAIR SAR efficiency at 7T by adaptive tailoring of adiabatic pulse power through deep learning estimation

2020

Journal Article

MRI phase offset correction method impacts quantitative susceptibility mapping

Abdulla, Shaeez Usman, Reutens, David, Bollmann, Steffen and Vegh, Viktor (2020). MRI phase offset correction method impacts quantitative susceptibility mapping. Magnetic Resonance Imaging, 74, 139-151. doi: 10.1016/j.mri.2020.08.009

MRI phase offset correction method impacts quantitative susceptibility mapping

2020

Journal Article

Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) using multi-contrast MRI

Shaw, Thomas, York, Ashley, Ziaei, Maryam, Barth, Markus and Bollmann, Steffen (2020). Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) using multi-contrast MRI. NeuroImage, 218 116798, 116798. doi: 10.1016/j.neuroimage.2020.116798

Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) using multi-contrast MRI

2020

Journal Article

Towards optimising MRI characterisation of Tissue (TOMCAT) dataset including all Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) data

Shaw, Thomas, York, Ashley, Barth, Markus and Bollmann, Steffen (2020). Towards optimising MRI characterisation of Tissue (TOMCAT) dataset including all Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) data. Data in Brief, 32 106043, 106043. doi: 10.1016/j.dib.2020.106043

Towards optimising MRI characterisation of Tissue (TOMCAT) dataset including all Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) data

2020

Journal Article

Influence of 7T GRE-MRI signal compartment model choice on tissue parameters

Thapaliya, Kiran, Vegh, Viktor, Bollmann, Steffen and Barth, Markus (2020). Influence of 7T GRE-MRI signal compartment model choice on tissue parameters. Frontiers in Neuroscience, 14 271, 271. doi: 10.3389/fnins.2020.00271

Influence of 7T GRE-MRI signal compartment model choice on tissue parameters

2020

Journal Article

Overview of quantitative susceptibility mapping using deep learning: current status, challenges and opportunities

Jung, Woojin, Bollmann, Steffen and Lee, Jongho (2020). Overview of quantitative susceptibility mapping using deep learning: current status, challenges and opportunities. NMR in Biomedicine, 35 (4) e4292, e4292. doi: 10.1002/nbm.4292

Overview of quantitative susceptibility mapping using deep learning: current status, challenges and opportunities

2020

Journal Article

Functional connectivity of the irritative zone identified by electrical source imaging, and EEG-correlated fMRI analyses

Urriola, Javier, Bollmann, Steffen, Tremayne, Fred, Burianová, Hana, Marstaller, Lars and Reutens, David (2020). Functional connectivity of the irritative zone identified by electrical source imaging, and EEG-correlated fMRI analyses. NeuroImage: Clinical, 28 102440, 102440. doi: 10.1016/j.nicl.2020.102440

Functional connectivity of the irritative zone identified by electrical source imaging, and EEG-correlated fMRI analyses

2019

Journal Article

Non-linear realignment improves hippocampus subfield segmentation reliability

Shaw, Thomas B., Bollmann, Steffen, Atcheson, Nicole T., Strike, Lachlan T., Guo, Christine, McMahon, Katie L., Fripp, Jurgen, Wright, Margaret J., Salvado, Olivier and Barth, Markus (2019). Non-linear realignment improves hippocampus subfield segmentation reliability. NeuroImage, 203 116206, 116206. doi: 10.1016/j.neuroimage.2019.116206

Non-linear realignment improves hippocampus subfield segmentation reliability

2019

Journal Article

7T GRE-MRI signal compartments are sensitive to dysplastic tissue in focal epilepsy

Thapaliya, Kiran, Urriola, Javier, Barth, Markus, Reutens, David C., Bollmann, Steffen and Vegh, Viktor (2019). 7T GRE-MRI signal compartments are sensitive to dysplastic tissue in focal epilepsy. Magnetic Resonance Imaging, 61, 1-8. doi: 10.1016/j.mri.2019.05.011

7T GRE-MRI signal compartments are sensitive to dysplastic tissue in focal epilepsy

2019

Journal Article

DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping

Bollmann, Steffen, Rasmussen, Kasper Gade Bøtker, Kristensen, Mads, Blendal, Rasmus Guldhammer, Østergaard, Lasse Riis, Plocharski, Maciej, O'Brien, Kieran, Langkammer, Christian, Janke, Andrew and Barth, Markus (2019). DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping. NeuroImage, 195, 373-383. doi: 10.1016/j.neuroimage.2019.03.060

DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping

2019

Journal Article

SHARQnet – Sophisticated harmonic artifact reduction in quantitative susceptibility mapping using a deep convolutional neural network

Bollmann, Steffen, Kristensen, Matilde Holm, Larsen, Morten Skaarup, Olsen, Mathias Vassard, Pedersen, Mads Jozwiak, Østergaard, Lasse Riis, O’Brien, Kieran, Langkammer, Christian, Fazlollahi, Amir and Barth, Markus (2019). SHARQnet – Sophisticated harmonic artifact reduction in quantitative susceptibility mapping using a deep convolutional neural network. Zeitschrift für Medizinische Physik, 29 (2), 139-149. doi: 10.1016/j.zemedi.2019.01.001

SHARQnet – Sophisticated harmonic artifact reduction in quantitative susceptibility mapping using a deep convolutional neural network

2017

Journal Article

Assessment of microstructural signal compartments across the corpus callosum using multi-echo gradient recalled echo at 7 T

Thapaliya, Kiran, Vegh, Viktor, Bollmann, Steffen and Barth, Markus (2017). Assessment of microstructural signal compartments across the corpus callosum using multi-echo gradient recalled echo at 7 T. NeuroImage, 182, 407-416. doi: 10.1016/j.neuroimage.2017.11.029

Assessment of microstructural signal compartments across the corpus callosum using multi-echo gradient recalled echo at 7 T

2017

Journal Article

Real-Time Clustered Multiple Signal Classification (RTC-MUSIC)

Dinh, Christoph, Esch, Lorenz, Rühle, Johannes, Bollmann, Steffen, Güllmar, Daniel, Baumgarten, Daniel, Hämäläinen, Matti S. and Haueisen, Jens (2017). Real-Time Clustered Multiple Signal Classification (RTC-MUSIC). Brain Topography, 31 (1), 125-128. doi: 10.1007/s10548-017-0586-7

Real-Time Clustered Multiple Signal Classification (RTC-MUSIC)

2017

Journal Article

The challenge of bias-free coil combination for quantitative susceptibility mapping at ultra-high field

Bollmann, Steffen, Robinson, Simon Daniel, O'Brien, Kieran, Vegh, Viktor, Janke, Andrew, Marstaller, Lars, Reutens, David and Barth, Markus (2017). The challenge of bias-free coil combination for quantitative susceptibility mapping at ultra-high field. Magnetic Resonance in Medicine, 79 (1), 97-107. doi: 10.1002/mrm.26644

The challenge of bias-free coil combination for quantitative susceptibility mapping at ultra-high field

2017

Journal Article

The PhysIO toolbox for modeling physiological noise in fMRI data

Kasper, Lars, Bollmann, Steffen, Diaconescu, Andreea O., Hutton, Chloe, Heinzle, Jakob, Iglesias, Sandra, Hauser, Tobias U., Sebold, Miriam, Manjaly, Zina-Mary, Pruessmann, Klaas P. and Stephan, Klaas E. (2017). The PhysIO toolbox for modeling physiological noise in fMRI data. Journal of Neuroscience Methods, 276, 56-72. doi: 10.1016/j.jneumeth.2016.10.019

The PhysIO toolbox for modeling physiological noise in fMRI data

2016

Journal Article

Accelerated mapping of magnetic susceptibility using 3D planes-on-a-paddlewheel (POP) EPI at ultra-high field strength

Stäb, Daniel, Bollmann, Steffen, Langkammer, Christian, Bredies, Kristian and Barth, Markus (2016). Accelerated mapping of magnetic susceptibility using 3D planes-on-a-paddlewheel (POP) EPI at ultra-high field strength. NMR in Biomedicine, 30 (4) e3620, e3620. doi: 10.1002/nbm.3620

Accelerated mapping of magnetic susceptibility using 3D planes-on-a-paddlewheel (POP) EPI at ultra-high field strength