
Overview
Availability
- Dr Alexander Stilgoe is:
- Available for supervision
Qualifications
- Bachelor (Honours) of Science (Advanced), The University of Queensland
- Doctor of Philosophy, The University of Queensland
Works
Search Professor Alexander Stilgoe’s works on UQ eSpace
2017
Journal Article
Impact of complex surfaces on biomicrorheological measurements using optical tweezers
Zhang, Shu, Gibson, Lachlan J, Stilgoe, Alexander B, Nieminen, Timo A and Rubinsztein-Dunlop, Halina (2017). Impact of complex surfaces on biomicrorheological measurements using optical tweezers. Lab on a chip, 18 (2), 315-322. doi: 10.1039/c7lc01176h
2017
Journal Article
Optical trapping of otoliths drives vestibular behaviours in larval zebrafish
Favre-Bulle, Itia A., Stilgoe, Alexander B., Rubinsztein-Dunlop, Halina and Scott, Ethan K. (2017). Optical trapping of otoliths drives vestibular behaviours in larval zebrafish. Nature Communications, 8 (1) 630, 630. doi: 10.1038/s41467-017-00713-2
2017
Journal Article
Erratum: Ultrasensitive rotating photonic probes for complex biological systems (vol 4, pg 1103, 2017)
Zhang, Shu, Gibson, Lachlan J., Stilgoe, Alexander B., Favre-Bulle, Itia A., Nieminen, Timo A. and Rubinsztein-Dunlop, Halina (2017). Erratum: Ultrasensitive rotating photonic probes for complex biological systems (vol 4, pg 1103, 2017). Optica, 4 (11), 1372-1372. doi: 10.1364/OPTICA.4.001372
2017
Journal Article
Ultrasensitive rotating photonic probes for complex biological systems
Zhang, Shu, Gibson, Lachlan J., Stilgoe, Alexander B., Favre-Bulle, Itia A., Nieminen, Timo A. and Rubinsztein-Dunlop, Halina (2017). Ultrasensitive rotating photonic probes for complex biological systems. Optica, 4 (9), 1103-1108. doi: 10.1364/OPTICA.4.001103
2017
Journal Article
Active rotational and translational microrheology beyond the linear spring regime
Gibson, Lachlan J., Zhang, Shu, Stilgoe, Alexander B., Nieminen, Timo A. and Rubinsztein-Dunlop, Halina (2017). Active rotational and translational microrheology beyond the linear spring regime. Physical Review E, 95 (4) 042608, 042608. doi: 10.1103/PhysRevE.95.042608
2017
Journal Article
Visual guide to optical tweezers
Lenton, Isaac C. D., Stilgoe, Alexander B., Rubinsztein-Dunlop, Halina and Nieminen, Timo A. (2017). Visual guide to optical tweezers. European Journal of Physics, 38 (3) 034009, 034009. doi: 10.1088/1361-6404/aa6271
2017
Journal Article
Roadmap on structured light
Rubinsztein-Dunlop, Halina, Forbes, Andrew, Berry, M. V., Dennis, M. R., Andrews, David L., Mansuripur, Masud, Denz, Cornelia, Alpmann, Christina, Banzer, Peter, Bauer, Thomas, Karimi, Ebrahim, Marrucci, Lorenzo, Padgett, Miles, Ritsch-Marte, Monika, Litchinitser, Natalia M., Bigelow, Nicholas P., Rosales-Guzman, C., Belmonte, A., Torres, J. P., Neely, Tyler W., Baker, Mark, Gordon, Reuven, Stilgoe, Alexander B., Romero, Jacquiline, White, Andrew G., Fickler, Robert, Willner, Alan E., Xie, Guodong, McMorran, Benjamin and Weiner, Andrew M. (2017). Roadmap on structured light. Journal of Optics, 19 (1) 013001, 013001. doi: 10.1088/2040-8978/19/1/013001
2017
Book Chapter
Optically driven rotating micromachines
Kashchuk, Anatolii V., Bui, Ann A.M., Zhang, Shu, Houillot, Antoine, Carberry, David, Stilgoe, Alexander B., Nieminen, Timo A. and Rubinsztein-Dunlop, Halina (2017). Optically driven rotating micromachines. Light robotics-structure-mediated nanobiophotonics. (pp. 99-128) edited by Jesper Glückstad and Darwin Palima. Amsterdam, Netherlands: Elsevier. doi: 10.1016/B978-0-7020-7096-9.00004-5
2016
Journal Article
Theory and practice of simulation of optical tweezers
Bui, Ann A. M., Stilgoe, Alexander B., Lenton, Isaac C. D., Gibson, Lachlan J., Kashchuk, Anatolii V., Zhang, Shu, Rubinsztein-Dunlop, Halina and Nieminen, Timo A. (2016). Theory and practice of simulation of optical tweezers. Journal of Quantitative Spectroscopy and Radiative Transfer, 195, 66-75. doi: 10.1016/j.jqsrt.2016.12.026
2016
Journal Article
An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs
Stilgoe, Alexander B., Kashchuk, Anatolii V., Preece, Daryl and Rubinsztein-Dunlop, Halina (2016). An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs. Journal of Optics, 18 (6) 065609, 065609. doi: 10.1088/2040-8978/18/6/065609
2016
Conference Publication
Measurements of particle-wall interaction forces using simultaneous position and force detection (Conference Presentation)
Kashchuk, Anatolii V., Bui, Ann A. M., Stilgoe, Alexander B., Carberry, David M., Nieminen, Timo A. and Rubinsztein-Dunlop, Halina H. (2016). Measurements of particle-wall interaction forces using simultaneous position and force detection (Conference Presentation). Conference on Optical Trapping and Optical Micromanipulation XIII, San Diego, CA, United States, 28 August-1 September 2016. BELLINGHAM: SPIE. doi: 10.1117/12.2236419
2015
Journal Article
Energy, momentum and propagation of non-paraxial high-order Gaussian beams in the presence of an aperture
Stilgoe, Alexander B., Nieminen, Timo A. and Rubinsztein-Dunlop, Halina (2015). Energy, momentum and propagation of non-paraxial high-order Gaussian beams in the presence of an aperture. Journal of Optics (United Kingdom), 17 (12) 125601, 125601.1-125601.12. doi: 10.1088/2040-8978/17/12/125601
2015
Journal Article
Enhanced optical trapping via structured scattering
Taylor, Michael A., Waleed, Muhammad., Stilgoe, Alexander B., Rubinsztein-Dunlop, Halina. and Bowen, Warwick P. (2015). Enhanced optical trapping via structured scattering. Nature Photonics, 9 (10), 669-673. doi: 10.1038/nphoton.2015.160
2015
Journal Article
Forces due to pulsed beams in optical tweezers: linear effects
du Preez-Wilkinson, Nathaniel, Stilgoe, Alexander B., Alzaidi, Thuraya, Rubinsztein-Dunlop, Halina and Nieminen, Timo A. (2015). Forces due to pulsed beams in optical tweezers: linear effects. Optics Express, 23 (6), 7190-7208. doi: 10.1364/OE.23.007190
2015
Journal Article
A theoretical model with experimental verification for heat and mass transfer of saline water droplets
Sadafi, M. H., Jahn, I., Stilgoe, A. B. and Hooman, K. (2015). A theoretical model with experimental verification for heat and mass transfer of saline water droplets. International Journal of Heat and Mass Transfer, 81, 1-9. doi: 10.1016/j.ijheatmasstransfer.2014.10.005
2015
Conference Publication
Enhanced optical trapping via structured scattering
Waleed, Muhammad, Taylor, Michael, Stilgoe, Alexander, Rubinsztein-Dunlop, Halina and Bowen, Warwick (2015). Enhanced optical trapping via structured scattering. Frontiers in Optics 2015, FIO 2015, San Jose, CA, United States, 18- 22 October 2015. Washington, DC, United States: OSA - The Optical Society. doi: 10.1364/FIO.2015.FW6B.4
2015
Conference Publication
Theory and practice of computational modeling and simulation of optical tweezers
Nieminen, Timo A., du Preez-Wilkinson, Nathaniel, Bui, Ann A. M., Stilgoe, Alexander B., Loke, Vincent L. Y. and Rubinsztein-Dunlop, Halina (2015). Theory and practice of computational modeling and simulation of optical tweezers. Optical Trapping Applications, OTA 2015, Vancouver, BC, Canada, 12-15 April 2015. Washington, DC, United States: OSA - The Optical Society. doi: 10.1364/OTA.2015.OtM4E.5
2015
Book Chapter
Optical forces, trapping and manipulation
Rubinsztein-Dunlop, Halina, Stilgoe, Alexander B., Preece, Darryl, Bui, Ann and Nieminen, Timo A. (2015). Optical forces, trapping and manipulation. Photonics: Scientific foundations, technology and applications. (pp. 287-339) edited by David L. Andrews. Hoboken, New Jersey, United States: Wiley. doi: 10.1002/9781119011781.ch7
2015
Journal Article
Escape forces and trajectories in optical tweezers and their effect on calibration
Bui, Ann A. M., Stilgoe, Alexander B., Khatibzadeh, Nima, Nieminen, Timo A., Berns, Michael W. and Rubinsztein-Dunlop, Halina (2015). Escape forces and trajectories in optical tweezers and their effect on calibration. Optics Express, 23 (19), 24317-24330. doi: 10.1364/OE.23.024317
2014
Journal Article
Determination of motility forces on isolated chromosomes with laser tweezers
Khatibzadeh, Nima, Stilgoe, Alexander B., Bui, Ann A. M., Rocha, Yesenia, Cruz, Gladys M., Loke, Vince, Shi, Linda Z., Nieminen, Timo A., Rubinsztein-Dunlop, Halina and Berns, Michael W. (2014). Determination of motility forces on isolated chromosomes with laser tweezers. Scientific Reports, 4 (6866) 6866, 1-9. doi: 10.1038/srep06866
Funding
Current funding
Supervision
Availability
- Dr Alexander Stilgoe is:
- Available for supervision
Before you email them, read our advice on how to contact a supervisor.
Available projects
-
Control and measurement of biological and optical active matter
Swarms of particles can extract energy from their environment. Any system that utilises energy in the environment for locomotion is active matter. One of the key reasons for this beahviour is for the foraging of resources. Active matter occurs throughout nature, ranging from single molecules to entire organisms. More recently, we have begun experiments using optically active materials. We want to understand the interactions of both synthetic and natural active matter systems.
There is a suite of honours projects in this topic area ranging from multiple particle tracking and behaviour characterisation using machine-learning techniques to designing active matter experiments to understand the complex interactions between active matter and their environment. The project may be tailored to the strengths and interests of the candidate as we find active matter a fascinating research area with plenty to discover.
This project can be tailored to suit honours, masters, and PhD level candidates.
Co-supervision with Halina Rubinstein-Dunlop.
-
3D Holographic microscope
Light-based microscopes have been at the forefront scientific research in the hard and soft physical sciences. They are limited by wave diffraction to resolutions of approximately half the wavelength of light used to image the sample. The image of this diffraction will change depending on the angle and wavelength of light used to illuminate the sample. Hence, these images contain complementary information about refractive index variation in 3D space. In this project we will advanced the field of microscopy by utilizing big data and machine learning to learn a filtering and transformation of data in a microscope system to yield synthetic images that accurately show the 3D localisation of refractive index variation within of complex environments. This will generate an unprecedented view of light-based microscope samples below the diffraction limit and into the intermediate scattering regime.
This project can be tailored to suit honours, masters, and PhD level candidates.
Co-supervision with Halina Rubinstein-Dunlop.
-
Manipulation of matter using vectoral shaping of light
Light can be used to trap and control matter on the microscale. One of the famous applications of optical manipulation are Optical Tweezers. Optical tweezers enable trapping and manipulation of matter using highly focused laser light. This project will utilise modern diffractive optics tehcniques and algoirthmic optimisation to improve control and mesurement of light--matter interactions using optical tweezers and enable a new generation of precision measurements for use within soft-matter and biological systems.
This project can be tailored to suit honours, masters, and PhD level candidates.
Co-supervision with Halina Rubinstein-Dunlop.
-
3D Holographic microscope
Light-based microscopes have been at the forefront scientific research in the hard and soft physical sciences. They are limited by wave diffraction to resolutions of approximately half the wavelength of light used to image the sample. The image of this diffraction will change depending on the angle and wavelength of light used to illuminate the sample. Hence, these images contain complementary information about refractive index variation in 3D space. In this project we will advanced the field of microscopy by utilizing big data and machine learning to learn a filtering and transformation of data in a microscope system to yield synthetic images that accurately show the 3D localisation of refractive index variation within of complex environments. This will generate an unprecedented view of light-based microscope samples below the diffraction limit and into the intermediate scattering regime.
This project can be tailored to suit honours, masters, and PhD level candidates.
Co-supervision with Halina Rubinstein-Dunlop.
-
Manipulation of matter using vectoral shaping of light
Light can be used to trap and control matter on the microscale. One of the famous applications of optical manipulation are Optical Tweezers. Optical tweezers enable trapping and manipulation of matter using highly focused laser light. This project will utilise modern diffractive optics tehcniques and algoirthmic optimisation to improve control and mesurement of light--matter interactions using optical tweezers and enable a new generation of precision measurements for use within soft-matter and biological systems.
This project can be tailored to suit honours, masters, and PhD level candidates.
Co-supervision with Halina Rubinstein-Dunlop.
-
Control and measurement of biological and optical active matter
Swarms of particles can extract energy from their environment. Any system that utilises energy in the environment for locomotion is active matter. One of the key reasons for this beahviour is for the foraging of resources. Active matter occurs throughout nature, ranging from single molecules to entire organisms. More recently, we have begun experiments using optically active materials. We want to understand the interactions of both synthetic and natural active matter systems.
There is a suite of honours projects in this topic area ranging from multiple particle tracking and behaviour characterisation using machine-learning techniques to designing active matter experiments to understand the complex interactions between active matter and their environment. The project may be tailored to the strengths and interests of the candidate as we find active matter a fascinating research area with plenty to discover.
This project can be tailored to suit honours, masters, and PhD level candidates.
Co-supervision with Halina Rubinstein-Dunlop.
Supervision history
Current supervision
-
Doctor Philosophy
Biohydrodynamics of bacterial-based active matter
Associate Advisor
Other advisors: Professor Halina Rubinsztein-Dunlop
-
Doctor Philosophy
Performing microrheological measurements of biological compartments with rotational optical tweezers
Associate Advisor
Other advisors: Professor Jennifer Stow, Dr Itia Favre-Bulle, Professor Halina Rubinsztein-Dunlop
Completed supervision
-
2021
Doctor Philosophy
Computational tools for simulation and control of optical tweezers
Associate Advisor
Other advisors: Professor Halina Rubinsztein-Dunlop, Dr Timo Nieminen
-
2019
Doctor Philosophy
Hydrodynamic forces in optical tweezers
Associate Advisor
Other advisors: Professor Halina Rubinsztein-Dunlop, Dr Timo Nieminen
-
2019
Doctor Philosophy
Measurement of forces in optical tweezers with applications in biological systems
Associate Advisor
Other advisors: Dr Timo Nieminen, Professor Halina Rubinsztein-Dunlop
-
2017
Doctor Philosophy
Calibration of optical tweezers for force microscopy
Associate Advisor
Other advisors: Professor Halina Rubinsztein-Dunlop, Dr Timo Nieminen
Media
Enquiries
For media enquiries about Dr Alexander Stilgoe's areas of expertise, story ideas and help finding experts, contact our Media team: