Skip to menu Skip to content Skip to footer
Dr Peng Chen
Dr

Peng Chen

Email: 
Phone: 
+61 7 334 63815

Overview

Background

Biography: Dr. Peng Chen is a Lecturer in the School of Chemical Engineering and an Emerging Group Leader in the Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland. In 2020, he got his PhD degree from School of Chemical Engineering at UQ, before moving to AIBN for two consecutive fellowships: Australian Centre for Advanced Photovoltaics (ACAP) Research Fellow (2020-2022) and ARC DECRA Fellow (2023-2025).

Research: Dr. Chen's research focuses on the development of low-cost and efficient thin-film photovoltaic technologies for renewable energy conversion and storage, including perovskite solar cells, quantum dot solar cells, and solar hydrogen production. In 2018, he pioneered the development of bilayer 2D-3D heterostructures for stable perovskite solar cells (Adv. Funct. Mater. 2018, 28, 1706923; citation: ~800 times). In 2021, he participated in the design of ultrastable perovskite-MOF glassy composites for lighting applications (Science 2021, 374, 621). In late 2023, he led the team to achieve a certified world-record efficiency of 16.65% for lead-free perovskite solar cells (Nature Nanotechnology 2025, 20, 779). In the past decade at UQ, he has contributed to over 60 peer-reviewed publications in top journals, including Science (×1), Nature Nanotechnology (×1), Nature Energy (×1), Nature Communications (×3), Advanced Materials (×3), Angewandte Chemie International Edition (×7), Journal of the American Chemistry Society (×1), Advanced Energy Materials (×4), ACS Nano (×3), Advanced Functional Materials (×4), Nano Energy (×3), etc. His publications have attracted >7000 citations with a H-index of 35 (Google Scholar). He has attracted over $3.6 million competitive research funds from ARC, ARENA, Australian Government, etc.

Teaching activities: Dr Chen is currently a lecturer of ENGG1500 Thermodynamics: Energy and Enivronment and MATE7016 Materials for Energy Conversion and Storage (Solar Cell Fabrication and Recycling) in the faculty of EAIT.

Availability

Dr Peng Chen is:
Available for supervision

Qualifications

  • Masters (Research) of Engineering, Shanghai University (上海大学)
  • Doctor of Philosophy of Chemical Engineering, The University of Queensland

Research interests

  • Lead-free perovskites for low-cost and efficient solar cells

  • All-perovskite tandem solar cells for green hydrogen production

  • Tin halide perovskite optoelectronics

Works

Search Professor Peng Chen’s works on UQ eSpace

70 works between 2010 and 2025

21 - 40 of 70 works

2023

Journal Article

Interfacial alloying between lead halide perovskite crystals and hybrid glasses

Li, Xuemei, Huang, Wengang, Krajnc, Andraž, Yang, Yuwei, Shukla, Atul, Lee, Jaeho, Ghasemi, Mehri, Martens, Isaac, Chan, Bun, Appadoo, Dominique, Chen, Peng, Wen, Xiaoming, Steele, Julian A., Hackbarth, Haira G., Sun, Qiang, Mali, Gregor, Lin, Rijia, Bedford, Nicholas M., Chen, Vicki, Cheetham, Anthony K., Tizei, Luiz H. G., Collins, Sean M., Wang, Lianzhou and Hou, Jingwei (2023). Interfacial alloying between lead halide perovskite crystals and hybrid glasses. Nature Communications, 14 (1) 7612, 1-12. doi: 10.1038/s41467-023-43247-6

Interfacial alloying between lead halide perovskite crystals and hybrid glasses

2023

Journal Article

How to GIWAXS: Grazing Incidence Wide Angle X-Ray Scattering applied to metal halide perovskite thin films

Steele, Julian A., Solano, Eduardo, Hardy, David, Dayton, Damara, Ladd, Dylan, White, Keith, Chen, Peng, Hou, Jingwei, Huang, Haowei, Saha, Rafikul Ali, Wang, Lianzhou, Gao, Feng, Hofkens, Johan, Roeffaers, Maarten B. J., Chernyshov, Dmitry and Toney, Michael F. (2023). How to GIWAXS: Grazing Incidence Wide Angle X-Ray Scattering applied to metal halide perovskite thin films. Advanced Energy Materials, 13 (27) 2300760. doi: 10.1002/aenm.202300760

How to GIWAXS: Grazing Incidence Wide Angle X-Ray Scattering applied to metal halide perovskite thin films

2023

Journal Article

How carbon contamination on the photocatalysts interferes with the performance analysis of CO<sub>2</sub> reduction

You, Jiakang, Xiao, Mu, Liu, Siqi, Lu, Haijiao, Chen, Peng, Jiang, Zhi, Shangguan, Wenfeng, Wang, Zhiliang and Wang, Lianzhou (2023). How carbon contamination on the photocatalysts interferes with the performance analysis of CO2 reduction. Journal of Materials Chemistry A, 11 (19), 10149-10154. doi: 10.1039/d3ta00834g

How carbon contamination on the photocatalysts interferes with the performance analysis of CO<sub>2</sub> reduction

2022

Journal Article

In situ bonding regulation of surface ligands for efficient and stable FAPbI3 quantum dot solar cells

Ding, Shanshan, Hao, Mengmeng, Fu, Changkui, Lin, Tongen, Baktash, Ardeshir, Chen, Peng, He, Dongxu, Zhang, Chengxi, Chen, Weijian, Whittaker, Andrew K., Bai, Yang and Wang, Lianzhou (2022). In situ bonding regulation of surface ligands for efficient and stable FAPbI3 quantum dot solar cells. Advanced Science, 9 (35) 2204476, 1-11. doi: 10.1002/advs.202204476

In situ bonding regulation of surface ligands for efficient and stable FAPbI3 quantum dot solar cells

2022

Journal Article

Dual metal‐assisted defect engineering towards high‐performance perovskite solar cells

Zhang, Chengxi, Baktash, Ardeshir, Zhong, Jun‐Xing, Chen, Weijian, Bai, Yang, Hao, Mengmeng, Chen, Peng, He, Dongxu, Ding, Shanshan, Steele, Julian A., Lin, Tongen, Lyu, Miaoqiang, Wen, Xiaoming, Wu, Wu‐Qiang and Wang, Lianzhou (2022). Dual metal‐assisted defect engineering towards high‐performance perovskite solar cells. Advanced Functional Materials, 32 (52) 2208077, 1-11. doi: 10.1002/adfm.202208077

Dual metal‐assisted defect engineering towards high‐performance perovskite solar cells

2022

Journal Article

Coordination chemistry engineered polymeric carbon nitride photoanode with ultralow onset potential for water splitting​​​​​​​

Fan, Xiangqian, Wang, Zhiliang, Lin, Tongen, Du, Du, Xiao, Mu, Chen, Peng, Monny, Sabiha Akter, Huang, Hengming, Lyu, Miaoqiang, Lu, Mingyuan and Wang, Lianzhou (2022). Coordination chemistry engineered polymeric carbon nitride photoanode with ultralow onset potential for water splitting​​​​​​​. Angewandte Chemie, 134 (32), 1-6. doi: 10.1002/ange.202204407

Coordination chemistry engineered polymeric carbon nitride photoanode with ultralow onset potential for water splitting​​​​​​​

2022

Journal Article

Coordination chemistry engineered polymeric carbon nitride photoanode with ultralow onset potential for water splitting

Fan, Xiangqian, Lin, Tongen, Wang, Zhiliang, Du, Du, Xiao, Mu, Chen, Peng, Monny, Sabiha Akter, Huang, Hengming, Lyu, Miaoqiang, Lu, Mingyuan and Wang, Lianzhou (2022). Coordination chemistry engineered polymeric carbon nitride photoanode with ultralow onset potential for water splitting. Angewandte Chemie International Edition, 61 (32) e202204407, 1-7. doi: 10.1002/anie.202204407

Coordination chemistry engineered polymeric carbon nitride photoanode with ultralow onset potential for water splitting

2022

Journal Article

Metal-organic framework-tailored perovskite solar cells

Chen, Peng, Hou, Jingwei and Wang, Lianzhou (2022). Metal-organic framework-tailored perovskite solar cells. Microstructures, 2 (3) 14, 1-15. doi: 10.20517/microstructures.2022.05

Metal-organic framework-tailored perovskite solar cells

2022

Journal Article

Surface chemistry engineering of perovskite quantum dots: strategies, applications, and perspectives

Bai, Yang, Hao, Mengmeng, Ding, Shanshan, Chen, Peng and Wang, Lianzhou (2022). Surface chemistry engineering of perovskite quantum dots: strategies, applications, and perspectives. Advanced Materials, 34 (4) e2105958, 1-35. doi: 10.1002/adma.202105958

Surface chemistry engineering of perovskite quantum dots: strategies, applications, and perspectives

2021

Journal Article

Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses

Hou, Jingwei, Chen, Peng, Shukla, Atul, Krajnc, Andraž, Wang, Tiesheng, Li, Xuemei, Doasa, Rana, Tizei, Luiz H. G., Chan, Bun, Johnstone, Duncan N., Lin, Rijia, Schülli, Tobias U., Martens, Isaac, Appadoo, Dominique, Ari, Mark S’, Wang, Zhiliang, Wei, Tong, Lo, Shih-Chun, Lu, Mingyuan, Li, Shichun, Namdas, Ebinazar B., Mali, Gregor, Cheetham, Anthony K., Collins, Sean M., Chen, Vicki, Wang, Lianzhou and Bennett, Thomas D. (2021). Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science, 374 (6567), 621-625. doi: 10.1126/science.abf4460

Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses

2021

Journal Article

Nanoconfined topochemical conversion from MXene to ultrathin non‐layered TiN nanomesh toward superior electrocatalysts for lithium‐sulfur batteries

Huang, Xia, Tang, Jiayong, Qiu, Tengfei, Knibbe, Ruth, Hu, Yuxiang, Schülli, Tobias U., Lin, Tongen, Wang, Zhiliang, Chen, Peng, Luo, Bin and Wang, Lianzhou (2021). Nanoconfined topochemical conversion from MXene to ultrathin non‐layered TiN nanomesh toward superior electrocatalysts for lithium‐sulfur batteries. Small, 17 (32) 2101360, 1-8. doi: 10.1002/smll.202101360

Nanoconfined topochemical conversion from MXene to ultrathin non‐layered TiN nanomesh toward superior electrocatalysts for lithium‐sulfur batteries

2021

Journal Article

Lead-free metal-halide double perovskites: from optoelectronic properties to applications

Ghasemi, Mehri, Hao, Mengmeng, Xiao, Mu, Chen, Peng, He, Dongxu, Zhang, Yurou, Chen, Weijian, Fan, Jiandong, Yun, Jung H., Jia, Baohua and Wen, Xiaoming (2021). Lead-free metal-halide double perovskites: from optoelectronic properties to applications. Nanophotonics, 10 (8), 2181-2219. doi: 10.1515/nanoph-2020-0548

Lead-free metal-halide double perovskites: from optoelectronic properties to applications

2021

Journal Article

Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution

Xiao, Mu, Jiao, Yalong, Luo, Bin, Wang, Songcan, Chen, Peng, Lyu, Miaoqiang, Du, Aijun and Wang, Lianzhou (2021). Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. Nano Research, 16 (4), 1-7. doi: 10.1007/s12274-021-3897-7

Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution

2020

Journal Article

J-aggregate-based FRET monitoring of drug release from polymer nanoparticles with high drug loading

Liu, Yun, Yang, Guangze, Jin, Song, Zhang, Run, Chen, Peng, Jisi, Teng, Wang, Lianzhou, Chen, Dong, Weitz, David and Zhao, Chun-Xia (2020). J-aggregate-based FRET monitoring of drug release from polymer nanoparticles with high drug loading. Angewandte Chemie, 132 (45) anie.202008018, 20240-20249. doi: 10.1002/anie.202008018

J-aggregate-based FRET monitoring of drug release from polymer nanoparticles with high drug loading

2020

Journal Article

Flexible solar-rechargeable energy system

Hu, Yuxiang, Ding, Shanshan, Chen, Peng, Seaby, Trent, Hou, Jingwei and Wang, Lianzhou (2020). Flexible solar-rechargeable energy system. Energy Storage Materials, 32, 356-376. doi: 10.1016/j.ensm.2020.06.028

Flexible solar-rechargeable energy system

2020

Journal Article

Sulfur-based redox chemistry for electrochemical energy storage

Huang, Xia, Luo, Bin, Chen, Peng, Searles, Debra J., Wang, Dan and Wang, Lianzhou (2020). Sulfur-based redox chemistry for electrochemical energy storage. Coordination Chemistry Reviews, 422 213445, 213445. doi: 10.1016/j.ccr.2020.213445

Sulfur-based redox chemistry for electrochemical energy storage

2020

Journal Article

Intermarriage of halide perovskites and metal-organic framework crystals

Hou, Jingwei, Wang, Zhiliang, Chen, Peng, Chen, Vicki, Cheetham, Anthony K. and Wang, Lianzhou (2020). Intermarriage of halide perovskites and metal-organic framework crystals. Angewandte Chemie, 59 (44) ange.202006956, 19434-19449. doi: 10.1002/anie.202006956

Intermarriage of halide perovskites and metal-organic framework crystals

2020

Journal Article

Minimizing voltage losses in perovskite solar cells

Chen, Peng, Bai, Yang and Wang, Lianzhou (2020). Minimizing voltage losses in perovskite solar cells. Small Structures, 2 (1) 2000050, 2000050. doi: 10.1002/sstr.202000050

Minimizing voltage losses in perovskite solar cells

2020

Journal Article

Dual‐ion‐diffusion induced degradation in lead‐free Cs2AgBiBr6 double perovskite solar cells

Ghasemi, Mehri, Zhang, Lei, Yun, Jung‐Ho, Hao, Mengmeng, He, Dongxu, Chen, Peng, Bai, Yang, Lin, Tongen, Xiao, Mu, Du, Aijun, Lyu, Miaoqiang and Wang, Lianzhou (2020). Dual‐ion‐diffusion induced degradation in lead‐free Cs2AgBiBr6 double perovskite solar cells. Advanced Functional Materials, 30 (42) 2002342, 2002342. doi: 10.1002/adfm.202002342

Dual‐ion‐diffusion induced degradation in lead‐free Cs2AgBiBr6 double perovskite solar cells

2020

Journal Article

Intermarriage of halide perovskites and metal‐organic framework crystals

Hou, Jingwei, Wang, Zhiliang, Chen, Peng, Chen, Vicki, Cheetham, Anthony K. and Wang, Lianzhou (2020). Intermarriage of halide perovskites and metal‐organic framework crystals. Angewandte Chemie, 132 (44), 19602-19617. doi: 10.1002/ange.202006956

Intermarriage of halide perovskites and metal‐organic framework crystals

Funding

Current funding

  • 2025 - 2026
    Developing lead-free perovskites for low-cost and environmentally friendly solar panels
    Australia's Economic Accelerator Ignite Grants
    Open grant
  • 2025 - 2027
    Global Hub of Advanced Materials and Integrated Optoelectronics (GH-AMIO)
    Australian Academy of Technological Sciences and Engineering
    Open grant
  • 2023 - 2026
    Solar rechargeable Zinc-Bromine Flow Batteries
    ARC Discovery Projects
    Open grant
  • 2023 - 2025
    All-perovskite tandem solar cells for efficient green hydrogen production
    ARC Discovery Early Career Researcher Award
    Open grant
  • 2022 - 2026
    Indoor Photovoltaics Enabled by Wide-Bandgap Perovskite Quantum Dots (ARC Linkage Project administered by Macquarie University)
    Macquarie University
    Open grant

Past funding

  • 2020 - 2022
    The development of high-efficiency quantum dot-organic tandem solar cells for new-generation wearable and lightweight photovoltaics
    Australian Centre for Advanced Photovoltaics
    Open grant

Supervision

Availability

Dr Peng Chen is:
Available for supervision

Looking for a supervisor? Read our advice on how to choose a supervisor.

Available projects

  • Lead-free perovskites for eco-friendly and low-cost photovoltaics

    A new family of optical materials – known as “metal halide perovskites” – have emerged within solar cell research, providing strong potential to revolutionize the photovoltaic market by satisfying several central criteria; namely, simple and scalable fabrication, low manufacturing costs and excellent power conversion efficiency. Recent progress has, however, been largely driven by the development of lead-based (Pb) perovskites solar cells as the field avoids dealing with the intractable issue of lead-toxicity, which imposes understandable adoption hesitancy and impedes commercialization. This project aims to resolve the toxicity issue by developing high-performance lead-free compounds, based on chemically similar tin (Sn), covering fundamental materials science and device development, to validating cost-effective and large-scale fabrication techniques through pilot studies informed by industry standards.

Media

Enquiries

For media enquiries about Dr Peng Chen's areas of expertise, story ideas and help finding experts, contact our Media team:

communications@uq.edu.au