
Overview
Background
Dr. Peng Chen is an Australian Research Council (ARC) Discovery Early-Career Researcher Award (DECRA) Fellow in Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland. In 2020, he got his PhD degree from School of Chemical Engineering at UQ under the supervision of Prof. Lianzhou Wang. He then moved to AIBN and worked as an Australian Centre for Advanced Photovoltaics (ACAP) Research Fellow during 2020-2022, and started his ARC DECRA Fellowship in 2023.
Availability
- Dr Peng Chen is:
- Available for supervision
Qualifications
- Masters (Research) of Engineering, Shanghai University (上海大学)
- Doctor of Philosophy of Chemical Engineering, The University of Queensland
Research interests
-
Lead-free perovskites for low-cost and efficient solar cells
-
All-perovskite tandem solar cells for green hydrogen production
-
Stable perovskite optoelectronics for flow batteries
Research impacts
Dr. Peng Chen's research focuses on the development of low-cost and efficient thin-film photovoltaic technologies for renewable energy conversion and storage, including perovskite solar cells, quantum dot solar cells, and solar hydrogen production. In 2018, he pioneered the developement of bilayer 2D-3D perovskite heterostructured solar cells (Adv. Funct. Mater. 2018, 28, 1706923). In 2021, he participated in the conceptual design of ultrastable perovskite-MOF glassy composites for lighting applications (Science 2021, 374, 621). In the past 8 years, he has contributed to over 50 peer-reviewed research papers publishing in top journals including Science, Nature Energy, Nature Communications, Advanced Materials, Angewandte Chemie, Advanced Energy Materials, etc, attracting more than 5000 citations with a H-index of 30 (Google Scholar). He has also attracted several research funds from ARC and ARENA, such as ACAP Fellowship (2020-2022), ARC DECRA Fellowship (2023-2025), and ARC DP (2023-2025).
Works
Search Professor Peng Chen’s works on UQ eSpace
2020
Journal Article
Dimensionality-controlled surface passivation for enhancing performance and stability of perovskite solar cells via triethylenetetramine vapor
Yao, Disheng, Mao, Xin, Wang, Xiaoxiang, Yang, Yang, Pham, Ngoc Duy, Du, Aijun, Chen, Peng, Wang, Lianzhou, Wilson, Gregory J. and Wang, Hongxia (2020). Dimensionality-controlled surface passivation for enhancing performance and stability of perovskite solar cells via triethylenetetramine vapor. ACS Applied Materials and Interfaces, 12 (5) acsami.9b19908, 6651-6661. doi: 10.1021/acsami.9b19908
2020
Journal Article
Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation
Hao, Mengmeng, Bai, Yang, Zeiske, Stefan, Ren, Long, Liu, Junxian, Yuan, Yongbo, Zarrabi, Nasim, Cheng, Ningyan, Ghasemi, Mehri, Chen, Peng, Lyu, Miaoqiang, He, Dongxu, Yun, Jung-Ho, Du, Yi, Wang, Yun, Ding, Shanshan, Armin, Ardalan, Meredith, Paul, Liu, Gang, Cheng, Hui-Ming and Wang, Lianzhou (2020). Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nature Energy, 5 (1), 79-88. doi: 10.1038/s41560-019-0535-7
2020
Journal Article
Designing efficient Bi2Fe4O9 photoanodes via bulk and surface defect engineering
Monny, Sabiha Akter, Wang, Zhiliang, Lin, Tongen, Chen, Peng, Luo, Bin and Wang, Lianzhou (2020). Designing efficient Bi2Fe4O9 photoanodes via bulk and surface defect engineering. Chemical Communications, 56 (65), 9376-9379. doi: 10.1039/d0cc04455e
2019
Journal Article
Phenethylammonium bismuth halides: from single crystals to bulky-organic cation promoted thin-film deposition for potential optoelectronic applications
Ghasemi, Mehri, Lyu, Miaoqiang, Roknuzzaman, Md, Yun, Jung-Ho, Hao, Mengmeng, He, Dongxu, Bai, Yang, Chen, Peng, Bernhardt, Paul V., Ostrikov, Kostya (Ken) and Wang, Lianzhou (2019). Phenethylammonium bismuth halides: from single crystals to bulky-organic cation promoted thin-film deposition for potential optoelectronic applications. Journal of Materials Chemistry A, 7 (36), 20733-20741. doi: 10.1039/c9ta07454f
2019
Journal Article
A portable and efficient solar‐rechargeable battery with ultrafast photo‐charge/discharge rate
Hu, Yuxiang, Bai, Yang, Luo, Bin, Wang, Songcan, Hu, Han, Chen, Peng, Lyu, Miaoqiang, Shapter, Joe, Rowan, Alan and Wang, Lianzhou (2019). A portable and efficient solar‐rechargeable battery with ultrafast photo‐charge/discharge rate. Advanced Energy Materials, 9 (28) 1900872, 1900872. doi: 10.1002/aenm.201900872
2019
Journal Article
Understanding the roles of oxygen vacancy in hematite based photoelectrochemical process
Wang, Zhiliang, Mao, Xin, Chen, Peng, Xiao, Mu, Monny, Sabiha Akter, Wang, Songcan, Konarova, Muxina, Du, Aijun and Wang, Lianzhou (2019). Understanding the roles of oxygen vacancy in hematite based photoelectrochemical process. Angewandte Chemie International Edition, 58 (4), 1030-1034. doi: 10.1002/anie.201810583
2018
Journal Article
Understanding the Roles of Oxygen Vacancies in Hematite-Based Photoelectrochemical Processes
Wang, Zhiliang, Mao, Xin, Chen, Peng, Xiao, Mu, Monny, Sabiha Akter, Wang, Songcan, Konarova, Muxina, Du, Aijun and Wang, Lianzhou (2018). Understanding the Roles of Oxygen Vacancies in Hematite-Based Photoelectrochemical Processes. Angewandte Chemie, 131 (4), 1042-1046. doi: 10.1002/ange.201810583
2018
Journal Article
Inorganic p-Type Semiconductors as Hole Conductor Building Blocks for Robust Perovskite Solar Cells
Cetin, Cagdas, Chen, Peng, Hao, Mengmeng, He, Dongxu, Bai, Yang, Lyu, Miaoqiang, Yun, Jung-Ho and Wang, Lianzhou (2018). Inorganic p-Type Semiconductors as Hole Conductor Building Blocks for Robust Perovskite Solar Cells. Advanced Sustainable Systems, 2 (8-9) 1800032, 1800032. doi: 10.1002/adsu.201800032
2018
Journal Article
New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting
Wang, Songcan, Chen, Peng, Bai, Yang, Yun, Jung-Ho, Liu, Gang and Wang, Lianzhou (2018). New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Advanced Materials, 30 (20) 1800486, e1800486. doi: 10.1002/adma.201800486
2018
Journal Article
Perovskite Solar Cells: In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells (Adv. Funct. Mater. 17/2018)
Chen, Peng, Bai, Yang, Wang, Songcan, Lyu, Miaoqiang, Yun, Jung-Ho and Wang, Lianzhou (2018). Perovskite Solar Cells: In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells (Adv. Funct. Mater. 17/2018). Advanced Functional Materials, 28 (17), 1870113. doi: 10.1002/adfm.201870113
2018
Journal Article
Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications
Chen, Peng, Bai, Yang, Lyu, Miaoqiang, Yun, Jung-Ho, Hao, Mengmeng and Wang, Lianzhou (2018). Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications. Solar RRL, 2 (3) 1700186, 1700186. doi: 10.1002/solr.201700186
2018
Journal Article
In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells
Chen, Peng, Bai, Yang, Wang, Songcan, Lyu, Miaoqiang, Yun, Jung-Ho and Wang, Lianzhou (2018). In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 28 (17) 1706923, 1-10. doi: 10.1002/adfm.201706923
2018
Journal Article
Energy loss analysis in photoelectrochemical water splitting: a case study of hematite photoanodes
Wang, Zhiliang, Lyu, Miaoqiang, Chen, Peng, Wang, Songcan and Wang, Lianzhou (2018). Energy loss analysis in photoelectrochemical water splitting: a case study of hematite photoanodes. Physical Chemistry Chemical Physics, 20 (35), 22629-22635. doi: 10.1039/c8cp04021d
2017
Journal Article
Tuning Enhancement Efficiency of Multiple Emissive Centers in Graphene Quantum Dots by Core-Shell Plasmonic Nanoparticles
Wang, Shujun, Clapper, Ashleigh, Chen, Peng, Wang, Lianzhou, Aharonovich, Igor, Jin, Dayong and Li, Qin (2017). Tuning Enhancement Efficiency of Multiple Emissive Centers in Graphene Quantum Dots by Core-Shell Plasmonic Nanoparticles. The journal of physical chemistry letters, 8 (22), 5673-5679. doi: 10.1021/acs.jpclett.7b02550
2017
Journal Article
An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting
Wang, Songcan, Chen, Peng, Yun, Jung-Ho, Hu, Yuxiang and Wang, Lianzhou (2017). An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angewandte Chemie , 56 (29), 8500-8504. doi: 10.1002/anie.201703491
2017
Journal Article
An Electrochemically Treated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting
Wang, Songcan, Chen, Peng, Yun, Jung-Ho, Hu, Yuxiang and Wang, Lianzhou (2017). An Electrochemically Treated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting. Angewandte Chemie, 129 (29), 8620-8624. doi: 10.1002/ange.201703491
2017
Journal Article
Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives
Lyu, Miaoqiang, Yun, Jung-Ho, Chen, Peng, Hao, Mengmeng and Wang, Lianzhou (2017). Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives. Advanced Energy Materials, 7 (15) 1602512. doi: 10.1002/aenm.201602512
2017
Journal Article
Enhanced perovskite electronic properties via a modified lead(II) chloride Lewis acid-base adduct and their effect in high-efficiency perovskite solar cells
Pham, Ngoc Duy, Tiong, Vincent Tiing, Chen, Peng, Wang, Lianzhou, Wilson, Gregory J., Bell, John and Wang, Hongxia (2017). Enhanced perovskite electronic properties via a modified lead(II) chloride Lewis acid-base adduct and their effect in high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 5 (10), 5195-5203. doi: 10.1039/c6ta11139d
2016
Journal Article
Recent advances in low-toxic lead-free metal halide perovskite materials for solar cell application
Zhang, Meng, Lyu, Miaoqiang, Chen, Peng, Hao, Mengmeng, Yun, Jung-Ho and Wang, Lianzhou (2016). Recent advances in low-toxic lead-free metal halide perovskite materials for solar cell application. Asia-Pacific Journal of Chemical Engineering, 11 (3), 392-398. doi: 10.1002/apj.1998
2014
Journal Article
Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries
Chen, Peng, Wu, Fengdan and Wang, Yong (2014). Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries. ChemSusChem, 7 (5), 1407-1414. doi: 10.1002/cssc.201301198
Funding
Current funding
Past funding
Supervision
Availability
- Dr Peng Chen is:
- Available for supervision
Before you email them, read our advice on how to contact a supervisor.
Available projects
-
All-perovskite tandem solar cells for efficient green hydrogen production
This project aims to design functional materials for the development high-performance and durable solar energy conversion devices, which enable efficient green solar hydrogen production to reduce fossil fuel consumption and alleviate environmental burden. The expected outcomes include advanced semiconducting materials, proof-of-concept solar-driven water electrolytic system with a high solar-to-hydrogen conversion efficiency, and cutting-edge knowledge in material science, physical chemistry, and nanotechnology. The success of this project expects to facilitate pilot-scale green hydrogen industry and thus position Australia at the frontier of advanced materials, clean energy, and renewable hydrogen supply technologies.
-
Perovskite solar cells for Zn-Br flow batteries
Australia is an energy-intensive country, in terms of both production and consumption per capita. Solar energy storage technology, which can reduce emissions of carbon dioxide and alleviate environmental and climate change, will directly benefit the Australian economy. This project aims to develop a new solar energy storage technology by integrating a solar charging process with the flow battery system for better utilization of the abundant yet intermittently available sunlight. Expected outcomes include a new solar driven rechargeable technology with high solar to electricity efficiency, which have strong commercial potential and will help to position Australia at the forefront of solar energy storage device development. The outcomes of this research will also significantly contribute new knowledge in materials science, electrochemistry, and nanotechnology, where Australia enjoys a competitive advantage.
-
Lead-free perovskites for non-toxic and low-cost photovoltaics
A new family of optical materials – known as “metal halide perovskites” – have emerged within solar cell research, providing strong potential to revolutionize the photovoltaic market by satisfying several central criteria; namely, simple and scalable fabrication, low manufacturing costs and excellent power conversion efficiency. Recent progress has, however, been largely driven by the development of lead-based (Pb) perovskites solar cells as the field avoids dealing with the intractable issue of lead-toxicity, which imposes understandable adoption hesitancy and impedes commercialization. This project aims to resolve the toxicity issue by developing high-performance lead-free compounds, based on chemically similar tin (Sn), covering fundamental materials science and device development, to validating cost-effective and large-scale fabrication techniques through pilot studies informed by industry standards.
Media
Enquiries
For media enquiries about Dr Peng Chen's areas of expertise, story ideas and help finding experts, contact our Media team: