
Overview
Background
Professor Geoffrey McLachlan's research interests are in: data mining, statistical analysis of microarray, gene expression data, finite mixture models and medical statistics.
Professor McLachlan received his PhD from the University of Queensland in 1974 and his DSc from there in 1994. His current research projects in statistics are in the related fields of classification, cluster and discriminant analyses, image analysis, machine learning, neural networks, and pattern recognition, and in the field of statistical inference. The focus in the latter field has been on the theory and applications of finite mixture models and on estimation via the EM algorithm.
A common theme of his research in these fields has been statistical computation, with particular attention being given to the computational aspects of the statistical methodology. This computational theme extends to Professor McLachlan's more recent interests in the field of data mining.
He is also actively involved in research in the field of medical statistics and, more recently, in the statistical analysis of microarray gene expression data.
Availability
- Professor Geoffrey McLachlan is:
- Available for supervision
- Media expert
Fields of research
Qualifications
- Bachelor (Honours) of Science (Advanced), The University of Queensland
- Doctor of Philosophy, The University of Queensland
- Doctoral Diploma of Science (Advanced), The University of Queensland
- Australian Mathematical Society, Australian Mathematical Society
Works
Search Professor Geoffrey McLachlan’s works on UQ eSpace
2004
Journal Article
Speeding up the EM algorithm for mixture model-based segmentation of magnetic resonance images
Ng, Shu-Kay and McLachlan, Geoffrey J. (2004). Speeding up the EM algorithm for mixture model-based segmentation of magnetic resonance images. Pattern Recognition, 37 (8), 1573-1589. doi: 10.1016/j.patcog.2004.02.012
2004
Journal Article
Using the EM Algorithm to Train Neural Networks: Misconceptions and a New Algorithm for Multiclass Classification
Ng, S. K. and McLachlan, G. J. (2004). Using the EM Algorithm to Train Neural Networks: Misconceptions and a New Algorithm for Multiclass Classification. IEEE Transactions on Neural Networks, 15 (3), 738-749. doi: 10.1109/TNN.2004.826217
2004
Conference Publication
On the simultaneous use of clinical and microarray expression data in the cluster analysis of tissue samples
McLachlan, G. J., Chang, S., Mar, J. and Ambroise, C. (2004). On the simultaneous use of clinical and microarray expression data in the cluster analysis of tissue samples. Second Asia-Pacific Bioinformatics Conference, Dunedin, New Zealand, 18-22 January 2004. Sydney, Australia: Australian Computer Society.
2004
Journal Article
Mixture modelling for cluster analysis
McLachlan, G. J. and Chang, S. U. (2004). Mixture modelling for cluster analysis. Statistical Methods In Medical Research, 13 (5), 347-361. doi: 10.1191/0962280204sm372ra
2004
Book Chapter
The EM algorithm
Ng, S. K., Krishnan, T. and McLachlan, G. J. (2004). The EM algorithm. Handbook of Computational Statistics: Concepts and Methods. (pp. 137-168) edited by J.E. Gentle, W. Hardle and Y. Mori. Germany: Springer-Verlag.
2004
Book
Analyzing microarray gene expression data
McLachlan, Geoffrey J., Do, Kim-Anh and Ambroise, Christophe (2004). Analyzing microarray gene expression data. Hoboken, NJ, USA: John Wiley & Sons. doi: 10.1002/047172842x
2004
Journal Article
On a resampling approach for tests on the number of clusters with mixture model-based clustering of tissue samples
McLachlan, GJ and Khan, N (2004). On a resampling approach for tests on the number of clusters with mixture model-based clustering of tissue samples. Journal of Multivariate Analysis, 90 (1), 90-105. doi: 10.1016/j.jmva.2004.02.002
2004
Conference Publication
Linking gene-expression experiments with survival-time data
Jones, L., Ng, A.S. K., Monico, K. A. and McLachlan, G. J. (2004). Linking gene-expression experiments with survival-time data. 19th International Workshop on Statistical Modelling, Florence, 4-8 July 2004. Italy: Firenze University Press.
2004
Book
Analyzing Microarray Gene Expression Data
McLachlan, G. J., Do, K. and Ambroise, C (2004). Analyzing Microarray Gene Expression Data. New York: Wiley-Interscience.
2004
Journal Article
Clustering objects on subsets of attributes - Discussion
Hand, DJ, Glasbey, C, Husmeier, D, Gower, JC, van Houwelingen, HC, Bugrien, JB, Nason, G, Critchley, F, Hoff, PD, McLachlan, GJ and Bean, RW (2004). Clustering objects on subsets of attributes - Discussion. Journal of The Royal Statistical Society Series B-statistical Methodology, 66 (4), 839-849.
2003
Journal Article
Model-based clustering in gene expression microarrays: an application to breast cancer data
Mar, J.C. and McLachlan, G.J. (2003). Model-based clustering in gene expression microarrays: an application to breast cancer data. International Journal of Software Engineering and Knowledge Engineering, 13 (6), 579-592. doi: 10.1142/S0218194003001482
2003
Journal Article
Model-based clustering in gene expression microarrays: an application to breast cancer data
Mar, J. C. and McLachlan, G. J. (2003). Model-based clustering in gene expression microarrays: an application to breast cancer data. International Journal of Software Engineering And Knowledge Engineering, 13 (6), 579-592. doi: 10.1142/S0218194003001482
2003
Journal Article
An EM-based Semi-Parametric Mixture Model Approach to the Regression Analysis of Competing-Risks Data
Ng, S. K. and McLachlan, G. J. (2003). An EM-based Semi-Parametric Mixture Model Approach to the Regression Analysis of Competing-Risks Data. Statistics In Medicine, 22 (7), 1097-1111. doi: 10.1002/sim.1371
2003
Journal Article
On the Choice of the Number of Blocks with the Incremental EM Algorithm for the Fitting of Normal Mixtures
Ng, S. K. and McLachlan, G. J. (2003). On the Choice of the Number of Blocks with the Incremental EM Algorithm for the Fitting of Normal Mixtures. Statistics And Computing, 13 (1), 45-55. doi: 10.1023/A:1021987710829
2003
Journal Article
Modelling High-Dimensional Data by Mixtures of Factor Analyzers
McLachlan, G. J., Peel, D. and Bean, R. W. (2003). Modelling High-Dimensional Data by Mixtures of Factor Analyzers. Computational Statistics & Data Analysis, 41 (3-4), 379-388. doi: 10.1016/S0167-9473(02)00183-4
2003
Conference Publication
On clustering by mixture models
McLachlan, GJ, Ng, SK and Peel, D (2003). On clustering by mixture models. 25th Annual Conference of the German-Classification-Society, Munich Germany, Mar 14-16, 2001. BERLIN: SPRINGER-VERLAG BERLIN.
2003
Journal Article
On some variants of the EM algorithm for the fitting of finite mixture models
Ng, A.S. K. and McLachlan, G. J. (2003). On some variants of the EM algorithm for the fitting of finite mixture models. Austrian Journal of Statistics, 32 (1 & 2), 143-161.
2003
Book Chapter
On clustering by mixture models
McLachlan, G. J., Ng, A.S. K. and Peel, D. (2003). On clustering by mixture models. Exploratory Data Analysis in Empirical Research. (pp. 141-148) edited by M. Schwaiger and O. Opitz. Germany: Springer. doi: 10.1007/978-3-642-55721-7_16
2003
Conference Publication
Segmentation of brain MR images with bias field correction
Kim, S-G., Ng, A.S. K., McLachlan, G. J. and Wang, D. (2003). Segmentation of brain MR images with bias field correction. WDIC 2003, The University of Queensland, Brisbane, 7 February 2003. Brisbane, Australia: The University of Queensland.
2003
Conference Publication
Robust estimation in Gaussian mixtures using multiresolution Kd -trees
Ng, A. S. K. and McLachlan, G. J. (2003). Robust estimation in Gaussian mixtures using multiresolution Kd -trees. Seventh International Conference on Digital Image Computing: Techniques and Applications, DICTA 2003, Sydney, Australia, 10-12 December 2003. Melbourne, Australia: CSIRO Publishing.
Funding
Current funding
Past funding
Supervision
Availability
- Professor Geoffrey McLachlan is:
- Available for supervision
Before you email them, read our advice on how to contact a supervisor.
Supervision history
Current supervision
-
Doctor Philosophy
Role of Finite Mixture Models in Semi-Supervised Learning
Principal Advisor
Other advisors: Dr Sharon Lee
-
Doctor Philosophy
Learning a mineralised fault network at the Cracow Gold Mine from geologically-informed 3D synthetic seismic data
Associate Advisor
Other advisors: Dr Dion Weatherley, Professor Rick Valenta
-
Doctor Philosophy
Using statistical genetics approaches to gain insight into patterns of variation in complex traits
Associate Advisor
Other advisors: Dr Vivi Arief, Dr Quan Nguyen, Emeritus Professor Kaye Basford
-
Doctor Philosophy
Using statistical genetics approaches to gain insight into patterns of variation in complex traits
Associate Advisor
Other advisors: Dr Vivi Arief, Dr Quan Nguyen, Emeritus Professor Kaye Basford
-
Doctor Philosophy
The Application of Advanced Statistical Methods to Hyperspectral Images in Mineral Exploration
Associate Advisor
Other advisors: Dr Dion Weatherley, Professor Rick Valenta
Completed supervision
-
2024
Doctor Philosophy
Detecting the unexpected in astronomical data using complexity based approaches
Principal Advisor
-
2023
Doctor Philosophy
Improving Predictability of Minerals Processing Models by Developing a Methodology based-on Machine Learning Techniques
Principal Advisor
-
-
2015
Doctor Philosophy
Finite Mixture Models for Regression Problems
Principal Advisor
Other advisors: Dr Ian Wood
-
2014
Doctor Philosophy
Finite Mixture Modelling using Multivariate Skew Distributions
Principal Advisor
Other advisors: Dr Ian Wood
-
2012
Doctor Philosophy
Detection of Differentially Expressed Genes via Mixture Models and Cluster Analysis
Principal Advisor
Other advisors: Dr Ian Wood
-
2009
Doctor Philosophy
Statistical analysis of high-dimensional gene expression data
Principal Advisor
-
2005
Doctor Philosophy
CLUSTERING WITH MIXED VARIABLES
Principal Advisor
-
2004
Master Science
Modelling the statistical behaviour of temperature using a modified Brennan and Schwartz 1982 interest rate model
Principal Advisor
Other advisors: Associate Professor Michael Bulmer
-
2024
Doctor Philosophy
The Wealth of Features: towards a coherent cooperative game theory for feature importance
Associate Advisor
Other advisors: Associate Professor Sally Shrapnel, Dr Ian Wood
-
2019
Doctor Philosophy
Maximum pseudolikelihood estimation with Markov random fields in the segmentation of brain magnetic resonance images
Associate Advisor
Other advisors: Dr Ian Wood
-
-
2016
Doctor Philosophy
Estimation of missing values in multivariate multi-environment trial data for three-way pattern analysis
Associate Advisor
Other advisors: Emeritus Professor Kaye Basford
-
-
Doctor Philosophy
TOPOLOGICAL MODELS OF TRANSMEMBRANE PROTEINS FOR SUBCELLULAR LOCALIZATION PREDICTION
Associate Advisor
Other advisors: Associate Professor Marcus Gallagher, Professor Mikael Boden
Media
Enquiries
Contact Professor Geoffrey McLachlan directly for media enquiries about:
- Bioinformatics
- Computation - statistics
- Computer learning
- Data mining
- Gene expression data
- Image analysis - statistics
- Machine learning
- Neural networks
- Pattern recognition - statistics
- Statistical methodology
- Statistics
Need help?
For help with finding experts, story ideas and media enquiries, contact our Media team: