Skip to menu Skip to content Skip to footer

2021

Book Chapter

Estimation of classification rules from partially classified data

McLachlan, Geoffrey and Ahfock, Daniel (2021). Estimation of classification rules from partially classified data. Data analysis and rationality in a complex world. (pp. 149-157) edited by Theodore Chadjipadelis, Berthold Lausen, Angelos Markos, Tae Rim Lee, Angela Montanari and Rebecca Nugent. Cham, Switzerland: Springer. doi: 10.1007/978-3-030-60104-1_17

Estimation of classification rules from partially classified data

2021

Book Chapter

Automated gating and dimension reduction of high-dimensional cytometry data

Lee, Sharon X., McLachlan, Geoffrey J. and Pyne, Saumyadipta (2021). Automated gating and dimension reduction of high-dimensional cytometry data. Mathematical, computational and experimental T cell immunology. (pp. 281-294) edited by Carmen Molina-París and Grant Lythe . Cham, Switzerland: Springer. doi: 10.1007/978-3-030-57204-4_16

Automated gating and dimension reduction of high-dimensional cytometry data

2020

Book Chapter

Comprehensive chemometrics: chemical and biochemical data analysis

McLachlan, G. J., Rathnayake, S. and Lee, S. X. (2020). Comprehensive chemometrics: chemical and biochemical data analysis. Comprehensive chemometrics: chemical and biochemical data analysis. (pp. 267-304) edited by Steven Brown, Roma Tauler and Beata Walczak. Oxford, United Kingdom: Elsevier.

Comprehensive chemometrics: chemical and biochemical data analysis

2019

Book Chapter

Mixture of factor analyzers for the clustering and visualization of high-dimensional data

McLachlan, Geoffrey J., Baek, Jangsun and Rathnayake, Suren I. (2019). Mixture of factor analyzers for the clustering and visualization of high-dimensional data. Advances in latent class analysis: a festschrift in honor of C. Mitchell Dayton. (pp. 79-98) edited by Gregory R. Hancock, Jeffrey R. Harring and George B. Macready. Charlotte, NC, United States: Information Age Publishing.

Mixture of factor analyzers for the clustering and visualization of high-dimensional data

2018

Book Chapter

Risk measures based on multivariate skew normal and skew t-mixture models

Lee, Sharon X. and McLachlan, Geoffrey J. (2018). Risk measures based on multivariate skew normal and skew t-mixture models. Asymmetric dependence in finance: diversification, correlation and portfolio management in market downturns. (pp. 152-168) edited by Jamie Alcock and Stephen Satchell. Chichester, West Sussex, United Kingdom: John Wiley & Sons. doi: 10.1002/9781119288992.ch7

Risk measures based on multivariate skew normal and skew t-mixture models

2017

Book Chapter

Statistical evaluation of labeled comparative profiling proteomics experiments using permutation test

Nguyen, Hien D., McLachlan, Geoffrey J. and Hill, Michelle M. (2017). Statistical evaluation of labeled comparative profiling proteomics experiments using permutation test. Proteome bioinformatics. (pp. 109-117) edited by Shivakumar Keerthikumar and Suresh Mathivanan. New York, NY United States: Humana Press. doi: 10.1007/978-1-4939-6740-7_9

Statistical evaluation of labeled comparative profiling proteomics experiments using permutation test

2017

Book Chapter

Finite mixture models in biostatistics

Lee, Sharon X., Ng, Shu-Kay and McLachlan, Geoffrey J. (2017). Finite mixture models in biostatistics. Disease Modelling and Public Health, Part A. (pp. 75-102) edited by Arni S.R. Srinivasa Rao, Saumyadipta Pyne and C.R. Rao. Amsterdam, Netherlands: Elsevier. doi: 10.1016/bs.host.2017.08.005

Finite mixture models in biostatistics

2017

Book Chapter

Clustering

McLachlan, G. J., Bean, R. W. and Ng, S. K. (2017). Clustering. Bioinformatics Vol. II: Structure, Function, and Applications. (pp. 345-362) edited by Jonathan M. Keith. New York, NY, United States: Humana Press. doi: 10.1007/978-1-4939-6613-4_19

Clustering

2017

Book Chapter

On the identification of correlated differential features for supervised classification of high-dimensional data

Ng, Shu Kay and McLachlan, Geoffrey J. (2017). On the identification of correlated differential features for supervised classification of high-dimensional data. Data science, innovative developments in data analysis and clustering. (pp. 43-57) edited by Francesco Palumbo, Angela Montanari and Maurizio Vichi. Cham, Switzerland: Springer. doi: 10.1007/978-3-319-55723-6

On the identification of correlated differential features for supervised classification of high-dimensional data

2016

Book Chapter

Application of mixture models to large datasets

Lee, Sharon X., McLachlan, Geoffrey J. and Pyne, Saumyadipta (2016). Application of mixture models to large datasets. Big data analytics: methods and applications. (pp. 57-74) edited by Saumyadipta Pyne, B. L. S. Prakasa Rao and S. B. Rao. New Delhi, India: Springer India. doi: 10.1007/978-81-322-3628-3_4

Application of mixture models to large datasets

2016

Book Chapter

Mixture distributions - further developments

McLachlan, Geoffrey J. (2016). Mixture distributions - further developments. Wiley statsref: statistics reference online. (pp. 1-13) Chichester, United Kingdom: John Wiley & Sons. doi: 10.1002/9781118445112.stat00947.pub2

Mixture distributions - further developments

2016

Book Chapter

Mixture models for standard p-dimensional Euclidean data

McLachlan, Geoffrey J. and Rathnayake, Suren I. (2016). Mixture models for standard p-dimensional Euclidean data. Handbook of cluster analysis. (pp. 145-171) edited by Christian Hennig, Marina Meila, Fionn Murtagh and Roberto Rocci. Boca Raton, FL, United States: CRC Press. doi: 10.1201/b19706-14

Mixture models for standard p-dimensional Euclidean data

2015

Book Chapter

Mixture Models in Statistics

McLachlan, Geoffrey J. (2015). Mixture Models in Statistics. International Encyclopedia of the Social & Behavioral Sciences: Second Edition. (pp. 624-628) Amsterdam, Netherlands: Elsevier . doi: 10.1016/B978-0-08-097086-8.42055-6

Mixture Models in Statistics

2015

Book Chapter

Computation: Expectation-Maximization Algorithm

McLachlan, Geoffrey J. (2015). Computation: Expectation-Maximization Algorithm. International Encyclopedia of the Social & Behavioral Sciences: Second Edition. (pp. 469-474) Amsterdam, Netherlands: Elsevier . doi: 10.1016/B978-0-08-097086-8.42007-6

Computation: Expectation-Maximization Algorithm

2015

Book Chapter

Multivariate Analysis: Classification and Discrimination

McLachlan, Geoffrey (2015). Multivariate Analysis: Classification and Discrimination. International Encyclopedia of the Social & Behavioral Sciences: Second Edition. (pp. 116-120) Amsterdam, Netherlands: Elsevier . doi: 10.1016/B978-0-08-097086-8.42150-1

Multivariate Analysis: Classification and Discrimination

2013

Book Chapter

Clustering of gene expression data via normal mixture models

McLachlan, G. J., Flack, L. K., Ng, S. K. and Wang, K. (2013). Clustering of gene expression data via normal mixture models. Statistical methods for microarray data analysis: methods and protocols. (pp. 103-119) edited by Andrei Y. Yakovlev, Lev Klebanov and Daniel Gaile. New York, NY, United States: Humana Press. doi: 10.1007/978-1-60327-337-4_7

Clustering of gene expression data via normal mixture models

2012

Book Chapter

An enduring interest in classification: supervised and unsupervised

McLachlan, G. J. (2012). An enduring interest in classification: supervised and unsupervised. Journeys to data mining: experiences from 15 renowned researchers. (pp. 147-171) edited by Mohamed Medhat Gaber. Heidelberg, Germany: Springer. doi: 10.1007/978-3-642-28047-4_12

An enduring interest in classification: supervised and unsupervised

2012

Book Chapter

The EM algorithm

Ng, Shu Kay, Krishnan, Thriyambakam and McLachlan, Geoffrey J. (2012). The EM algorithm. Handbook of Computational Statistics: Concepts and Methods. (pp. 139-172) edited by James E. Gentle, Wolfgang Karl Hardle and Yuichi Mori. Berlin & New York: Springer. doi: 10.1007/978-3-642-21551-3__6

The EM algorithm

2011

Book Chapter

The EM Algorithm

Ng, Shu Kay, Krishnan, Thriyambakam and McLachlan, Geoffrey J. (2011). The EM Algorithm. Handbook of Computational Statistics. (pp. 139-172) Berlin, Germany: Springer. doi: 10.1007/978-3-642-21551-3_6

The EM Algorithm

2011

Book Chapter

Mixtures of factor analyzers for the analysis of high-dimensional data

McLachlan, Geoffrey J., Baek, Jangsun and Rathnayake, Suren I. (2011). Mixtures of factor analyzers for the analysis of high-dimensional data. Mixture estimation and applications. (pp. 189-212) edited by Kerrie L. Mengersen, Christian P. Robert and D. Michael Titterington. Chichester, United Kingdom: John Wiley and Sons. doi: 10.1002/9781119995678.ch9

Mixtures of factor analyzers for the analysis of high-dimensional data