Skip to menu Skip to content Skip to footer
Dr Loan Nguyen
Dr

Loan Nguyen

Email: 
Phone: 
+61 7 334 62179

Overview

Background

Dr. Nguyen is an expert in applying long-read Oxford Nanopore Sequencing Technologies (ONT) in agriculture, particularly livestock and other sectors. Her groundbreaking contributions include being the pioneer in sequencing the genomes of Brahman and Wagyu cattle, developing an innovative epigenetic clock for age prediction in cattle, and successfully implementing ONT portable sequencers for Blockchain traceability systems in Australia.

As a leader in the field, Dr. Nguyen spearheads the use of ONT long-read technology to scaffold genome assemblies in livestock, plants, protists, and insects. Her multidisciplinary expertise in molecular biology, advanced genomics, and animal sciences also empowers her to explore causative markers for commercial SNP arrays and identify significant DNA variants from low-coverage sequencing data sets.

Dr. Nguyen's exceptional achievements and expertise have been acknowledged through the prestigious ARC Industry Fellowship, recognising her as a promising early career researcher. Her work has significantly contributed to advancing genomic research in agriculture and has opened new avenues for utilising ONT sequencing technologies across diverse domains.

Availability

Dr Loan Nguyen is:
Available for supervision
Media expert

Qualifications

  • Doctor of Philosophy, The University of Queensland

Works

Search Professor Loan Nguyen’s works on UQ eSpace

55 works between 2014 and 2024

21 - 40 of 55 works

2021

Conference Publication

Assessing the potential of parentage testing using portable long read sequencing technologies

Ross, E. M., Lamb, H. J., Engle, B. N. , Nguyen, L. T. and Hayes, B. J. (2021). Assessing the potential of parentage testing using portable long read sequencing technologies. 24th Association for the Advancement of Animal Breeding and Genetics Conference, On-line with local hubs in Australia, 2-4 November 2021. Armidale, NSW Australia: Association for the Advancement of Animal Breeding and Genetics.

Assessing the potential of parentage testing using portable long read sequencing technologies

2021

Conference Publication

Genome wide analysis of bovine enhancers and promoters across developmental stages in liver

Forutan, M., Vander Jagt, C.J., Ross, E., Chamberlain, A. J., Mason, B., Nguyen, L., Moore, S., Garner, J. B., Xiang, R. and Hayes, B. J. (2021). Genome wide analysis of bovine enhancers and promoters across developmental stages in liver. 24th Association for the Advancement of Animal Breeding and Genetics Conference, On-line with local hubs in Australia, 2-4 November 2021. Armidale, NSW Australia: Association for the Advancement of Animal Breeding and Genetics.

Genome wide analysis of bovine enhancers and promoters across developmental stages in liver

2021

Conference Publication

Accuracy of genomic prediction in Brahman cattle using simulated genotypes from low-coverage nanopore sequencing

Lamb, H. J. , Nguyen, L. T., Engle, B. N., Hayes, B. J. and Ross, E. M. (2021). Accuracy of genomic prediction in Brahman cattle using simulated genotypes from low-coverage nanopore sequencing. 24th Association for the Advancement of Animal Breeding and Genetics Conference, On-line with local hubs in Australia, 2-4 November 2021. Armidale, NSW Australia: Association for the Advancement of Animal Breeding and Genetics.

Accuracy of genomic prediction in Brahman cattle using simulated genotypes from low-coverage nanopore sequencing

2021

Journal Article

Chromatin accessibility and regulatory vocabulary across indicine cattle tissues

Alexandre, Pâmela A., Naval-Sánchez, Marina, Menzies, Moira, Nguyen, Loan T., Porto-Neto, Laercio R., Fortes, Marina R. S. and Reverter, Antonio (2021). Chromatin accessibility and regulatory vocabulary across indicine cattle tissues. Genome Biology, 22 (1) 273, 273. doi: 10.1186/s13059-021-02489-7

Chromatin accessibility and regulatory vocabulary across indicine cattle tissues

2021

Journal Article

Prowler: a novel trimming algorithm for Oxford Nanopore sequence data

Lee, Simon, Nguyen, Loan T., Hayes, Ben J. and Ross, Elizabeth (2021). Prowler: a novel trimming algorithm for Oxford Nanopore sequence data. Bioinformatics, 37 (21), 3936-3937. doi: 10.1093/bioinformatics/btab630

Prowler: a novel trimming algorithm for Oxford Nanopore sequence data

2021

Conference Publication

Genome-wide analysis of transcription start sites across Bos indicus tissues

Forutan, Mehrnush, Ross, Elizabeth, Nguyen, Loan and Hayes, Ben (2021). Genome-wide analysis of transcription start sites across Bos indicus tissues. 38th International Conference on Animal Genetics, Online, 26 - 30 July 2021.

Genome-wide analysis of transcription start sites across Bos indicus tissues

2021

Conference Publication

A Bos indicus epigenetic clock predicts age from tail hair

Nguyen, Loan T., Forutan, Mehrnush, Hayes, Ben J. and Ross, Elizabeth M. (2021). A Bos indicus epigenetic clock predicts age from tail hair. 38th International Society of Animal Genetics (ISAG), Virtual, 26 - 30 July 2021.

A Bos indicus epigenetic clock predicts age from tail hair

2021

Conference Publication

Chromatin accessibility and regulatory vocabulary in indicine cattle

Alexandre, Pâmela A., Naval-Sánchez, Marina, Menzies, Moira, Nguyen, Loan T., Porto-Neto, Laercio, Fortes, Marina R.S. and Reverter, Antonio (2021). Chromatin accessibility and regulatory vocabulary in indicine cattle. 38th International Society of Animal Genetics (ISAG), Virtual, 26-30 July 2021. Champaign, IL United States: ISAG.

Chromatin accessibility and regulatory vocabulary in indicine cattle

2021

Conference Publication

Genomic prediction using low-coverage Nanopore sequencing

Lamb, Harrison, Nguyen, Loan T., Hayes, Ben J., Randhawa, Imtiaz A. S. and Ross, Elizabeth M. (2021). Genomic prediction using low-coverage Nanopore sequencing. 38th International Society of Animal Genetics, Virtual, 26 - 30 July 2021.

Genomic prediction using low-coverage Nanopore sequencing

2021

Journal Article

Evolution of tissue and developmental specificity of transcription start sites in Bos taurus indicus

Forutan, Mehrnush, Ross, Elizabeth, Chamberlain, Amanda J., Nguyen, Loan, Mason, Brett, Moore, Stephen, Garner, Josie B., Xiang, Ruidong and Hayes, Ben J. (2021). Evolution of tissue and developmental specificity of transcription start sites in Bos taurus indicus. Communications Biology, 4 (1) 829, 1-14. doi: 10.1038/s42003-021-02340-6

Evolution of tissue and developmental specificity of transcription start sites in Bos taurus indicus

2021

Journal Article

Variants at the ASIP locus contribute to coat color darkening in Nellore cattle

Trigo, Beatriz B., Utsunomiya, Adam T. H., Fortunato, Alvaro A. A. D., Milanesi, Marco, Torrecilha, Rafaela B. P., Lamb, Harrison, Nguyen, Loan, Ross, Elizabeth M., Hayes, Ben, Padula, Romulo C. M., Sussai, Thayla S., Zavarez, Ludmilla B., Cipriano, Rafael S., Caminhas, Maria M. T., Lopes, Flavia L., Pelle, Cassiano, Leeb, Tosso, Bannasch, Danika, Bickhart, Derek, Smith, Timothy P. L., Sonstegard, Tad S., Garcia, Jose F. and Utsunomiya, Yuri T. (2021). Variants at the ASIP locus contribute to coat color darkening in Nellore cattle. Genetics Selection Evolution, 53 (1) 40, 40. doi: 10.1186/s12711-021-00633-2

Variants at the ASIP locus contribute to coat color darkening in Nellore cattle

2021

Journal Article

Improved genomic prediction of clonal performance in sugarcane by exploiting non-additive genetic effects

Yadav, Seema, Wei, Xianming, Joyce, Priya, Atkin, Felicity, Deomano, Emily, Sun, Yue, Nguyen, Loan T., Ross, Elizabeth M., Cavallaro, Tony, Aitken, Karen S., Hayes, Ben J. and Voss-Fels, Kai P. (2021). Improved genomic prediction of clonal performance in sugarcane by exploiting non-additive genetic effects. Theoretical and Applied Genetics, 134 (7), 2235-2252. doi: 10.1007/s00122-021-03822-1

Improved genomic prediction of clonal performance in sugarcane by exploiting non-additive genetic effects

2021

Journal Article

Accuracy of genomic prediction of complex traits in sugarcane

Hayes, Ben J., Wei, Xianming, Joyce, Priya, Atkin, Felicity, Deomano, Emily, Yue, Jenny, Nguyen, Loan, Ross, Elizabeth M., Cavallaro, Tony, Aitken, Karen S. and Voss-Fels, Kai P. (2021). Accuracy of genomic prediction of complex traits in sugarcane. Theoretical and Applied Genetics, 134 (5), 1455-1462. doi: 10.1007/s00122-021-03782-6

Accuracy of genomic prediction of complex traits in sugarcane

2020

Journal Article

The future of livestock management: a review of real-time portable sequencing applied to livestock

Lamb, Harrison J., Hayes, Ben J., Nguyen, Loan T. and Ross, Elizabeth M. (2020). The future of livestock management: a review of real-time portable sequencing applied to livestock. Genes, 11 (12) 1478, 1-27. doi: 10.3390/genes11121478

The future of livestock management: a review of real-time portable sequencing applied to livestock

2020

Journal Article

Genome-wide co-expression distributions as a metric to prioritize genes of functional importance

Alexandre, Pâmela A., Hudson, Nicholas J., Lehnert, Sigrid A., Fortes, Marina R. S., Naval-Sánchez, Marina, Nguyen, Loan T., Porto-Neto, Laercio R. and Reverter, Antonio (2020). Genome-wide co-expression distributions as a metric to prioritize genes of functional importance. Genes, 11 (10) 1231, 1231-13. doi: 10.3390/genes11101231

Genome-wide co-expression distributions as a metric to prioritize genes of functional importance

2020

Journal Article

X chromosome variants are associated with male fertility traits in two bovine populations

Fortes, Marina R. S., Porto-Neto, Laercio R., Satake, Nana, Nguyen, Loan T., Freitas, Ana Claudia, Melo, Thaise P., Scalez, Daiane Cristina Becker, Hayes, Ben, Raidan, Fernanda S. S., Reverter, Antonio and Boe-Hansen, Gry B. (2020). X chromosome variants are associated with male fertility traits in two bovine populations. Genetics Selection Evolution, 52 (1) 46, 46. doi: 10.1186/s12711-020-00563-5

X chromosome variants are associated with male fertility traits in two bovine populations

2020

Journal Article

Gene regulation could be attributed to TCF3 and other key transcription factors in the muscle of pubertal heifers

Lau, Li Yieng, Nguyen, Loan T., Reverter, Antonio, Moore, Stephen S., Lynn, Aaron, McBride‐Kelly, Liam, Phillips‐Rose, Louis, Plath, Mackenzie, Macfarlane, Rhys, Vasudivan, Vanisha, Morton, Lachlan, Ardley, Ryan, Ye, Yunan and Fortes, Marina R. S. (2020). Gene regulation could be attributed to TCF3 and other key transcription factors in the muscle of pubertal heifers. Veterinary Medicine and Science, 6 (4) vms3.278, 695-710. doi: 10.1002/vms3.278

Gene regulation could be attributed to TCF3 and other key transcription factors in the muscle of pubertal heifers

2020

Journal Article

Characterization of the poll allele in Brahman cattle using long-read Oxford Nanopore sequencing

Lamb, Harrison J., Ross, Elizabeth M., Nguyen, Loan T., Lyons, Russell E., Moore, Stephen S. and Hayes, Ben J. (2020). Characterization of the poll allele in Brahman cattle using long-read Oxford Nanopore sequencing. Journal of Animal Science, 98 (5) skaa127, skaa127. doi: 10.1093/jas/skaa127

Characterization of the poll allele in Brahman cattle using long-read Oxford Nanopore sequencing

2019

Journal Article

Proteomics recapitulates ovarian proteins relevant to puberty and fertility in Brahman heifers (Bos indicus L.)

Tahir, Muhammad S., Nguyen, Loan T., Schulz, Benjamin L., Boe-Hansen, Gry A., Thomas, Milton G., Moore, Stephen S., Lau, Li Yieng and Fortes, Marina R S (2019). Proteomics recapitulates ovarian proteins relevant to puberty and fertility in Brahman heifers (Bos indicus L.). Genes, 10 (11) 923, 923. doi: 10.3390/genes10110923

Proteomics recapitulates ovarian proteins relevant to puberty and fertility in Brahman heifers (Bos indicus L.)

2019

Conference Publication

Pre- and post-puberty co-expression gene networks from RNA-sequencing of Brahman heifers

Nguyen, Loan T., Reverter, Antonio, Cánovas, Angela, Porto-Neto, L.R., Venus, Bronwyn, Islas-Trejo, Alma, Lehnert, Sigrid A., Medrano, Juan F., Thomas, Milton G., Moore, Stephen S. and Fortes, Marina R.S. (2019). Pre- and post-puberty co-expression gene networks from RNA-sequencing of Brahman heifers. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, Armidale, NSW, Australia, 27 October - 1 November 2019.

Pre- and post-puberty co-expression gene networks from RNA-sequencing of Brahman heifers

Funding

Current funding

  • 2023 - 2025
    Harnessing the synbio potential of Australia's stingless bees, the first step
    Sugar Research Australia Limited
    Open grant
  • 2022 - 2026
    On-farm genomics: genomic solutions for Northern beef cattle management and breeding
    Meat & Livestock Australia
    Open grant

Past funding

  • 2021 - 2022
    DNA as the ultimate identifier in blockchain traceability systems
    Innovation Connections
    Open grant

Supervision

Availability

Dr Loan Nguyen is:
Available for supervision

Before you email them, read our advice on how to contact a supervisor.

Available projects

  • Cas9 targeted enrichment of age-related sites

    Tools to predict birthdates of cattle are desperately required by industry to ensure compliance with breed registration requirements and to increase the rate of genetic gain for traits such as growth rate and fertility. This study will use new methods of gene targeting and sequencing to investigate the predictive ability of the methylation status of key genes related to age in mammals. Several studies found age-related-conserved sites among species. From these a list of 43 age related genes in cattle has been derived. In this study these genes will be targeted for sequencing and methylation calling in cattle of varying ages. A predictive statistical approach will then the used to associated the methylation rates of those genes with animal age, which can then be used to calculate birthdate.

    This project will apply long-read Oxford Nanopore Sequencing CAS9 targeted enrichment. The project aims to use this approach to target age-related-conversed genes among humans, dogs, and cattle. Finally, validation in large populations will be performed with the most significant age-related sites using quantitative methylation-specific PCR. The ultimate aim of this work is to develop an on farm diagnostic tool that will allows producers to record accurate birthdates and improve the profitability of the beef industry through genetic gain for key traits.

    This project will develop skills in bioinformatics and molecular biology. Students will learn how to design experiments, perform sequencing, and manage very large sequence data sets.

  • A comparison of Full-length transcript sequencings methods

    Precise gene annotations are essential to understanding the complexity of a species transcriptome and to connect genomic sequence to gene function and ultimately phenotype. RNA sequencing has been widely applied to build a reference transcriptome using short-read sequencing, followed by the assembly or mapping reads to accessible reference genomes. However, short-read sequencing is facing the challenge of lengthy transcripts, repetitive regions, and transposable elements. Long read-sequencing technology, represented by Pacbio Sequencing and Oxford Nanopore sequencing, has overwhelmed this challenge by generating full-length transcripts. Another advantage of Oxford Nanopore sequencing is the potential to direct sequence RNA molecules to remove PCR bias and identify the base modifications.

    In this study, students will perform direct cDNA sequencing and direct RNA sequencing from the liver samples from two cattle genomes using Pacbio isoform sequencing and Nanopore sequencing. The generated sequencing datasets will be compared between technologies and published sequencing data from the same tissues (RNAseq and CAGEseq). The ultimate aim of this project is to advance our understanding of emerging technologies and deeping our understanding of the cattle transcriptome.

    This project will developed molecular techniques (DNA extraction, library preparation and sequencing) and bioinformatics skills. Students will learn how to work with RNA samples and manage extensive sequencing data sets.

  • DNA extraction method for faecal metagenomics to assess cattle diet

    Cattle diet history information can be obtained by studying non-invasive samples, like dried faecal samples. Additionally, the analysis of faecal samples can also provide the information about the digestive efficiency of an animal. The advent of improved sequencing methodologies has simplified the characterization of complex faecal DNA and allows for the characterization of diet profiles by matching the faecal sequence data with available sequence databases of potential food sources. In this study, student will employ different extraction protocols to isolate DNA from faecal samples using a variety of molecular techniques in the lab.

  • Predicting age using methylated sites

    In humans, the methylation state of CpG sites changes with age and can therefore be utilized as an accurate biomarker for aging. In cattle, biological age prediction based on methylation status could provide key information for genetic improvement programs. Additionally, comparing chronological age with biological age (based on methylation status) can provide important information about the stress an animal has been under during its lifetime. However, relatively little is known about DNA methylation patterns in cattle. Students will use cutting edge data sources including reduce representation bisulphite sequencing data, whole genome bisulphite sequencing, long read sequencing and human methylation data to identify differentially methylated regions between old and young animals and validate those regions with modern molecular technologies.

  • Exploring tissue specific methylation sites in cattle

    DNA methylation is an epigenetic mechanism driving the gene expression in specific tissues at a particular stage. However, the mechanism of how DNA-methylation regulates gene expression in cattle is still unknown. Here, the student will use two types of datasets, whole genome sequencing from Oxford Nanopore sequencing versus RNA sequencing, to explore the relationship between methylation and gene expression. This will be conducted in two tissues, lung and liver.

  • Discovering methane reducing pathways in seaweed

    Cattle are a major source of methane, a potent greenhouse gas. Recently, it has been discovered that feeding some seaweeds to cattle, particularly red seaweed (Asparagopsis taxiformis) greatly reduces methane emissions. In this project, the successful candidate will sequence the red seaweed genome, and discover the gene pathways that led to the production of anti-methanogenic compounds. This knowledge could lead to new innovations to reduce methane emissions and so contribute to a large scale reduction in global warming. The student will learn skills in genome sequencing with state of the art (Nanopore) technology as well as cutting edge bioinformatics techniques.

Supervision history

Current supervision

Completed supervision

Media

Enquiries

Contact Dr Loan Nguyen directly for media enquiries about their areas of expertise.

Need help?

For help with finding experts, story ideas and media enquiries, contact our Media team:

communications@uq.edu.au