
Overview
Background
Professor Geoffrey McLachlan's research interests are in: data mining, statistical analysis of microarray, gene expression data, finite mixture models and medical statistics.
Professor McLachlan received his PhD from the University of Queensland in 1974 and his DSc from there in 1994. His current research projects in statistics are in the related fields of classification, cluster and discriminant analyses, image analysis, machine learning, neural networks, and pattern recognition, and in the field of statistical inference. The focus in the latter field has been on the theory and applications of finite mixture models and on estimation via the EM algorithm.
A common theme of his research in these fields has been statistical computation, with particular attention being given to the computational aspects of the statistical methodology. This computational theme extends to Professor McLachlan's more recent interests in the field of data mining.
He is also actively involved in research in the field of medical statistics and, more recently, in the statistical analysis of microarray gene expression data.
Availability
- Professor Geoffrey McLachlan is:
- Available for supervision
- Media expert
Fields of research
Qualifications
- Bachelor (Honours) of Science (Advanced), The University of Queensland
- Doctor of Philosophy, The University of Queensland
- Doctoral Diploma of Science (Advanced), The University of Queensland
- Australian Mathematical Society, Australian Mathematical Society
Works
Search Professor Geoffrey McLachlan’s works on UQ eSpace
2013
Journal Article
How to find an appropriate clustering for mixed-type variables with application to socio-economic stratification: written contribution to the discussion on the paper by Hennig and Liao
McLachlan, G. J. (2013). How to find an appropriate clustering for mixed-type variables with application to socio-economic stratification: written contribution to the discussion on the paper by Hennig and Liao. Applied Statistics-Journal of the Royal Statistical Society Series C, 62 (3), 309-369. doi: 10.1111/j.1467-9876.2012.01066.x
2013
Journal Article
Critical assessment of automated flow cytometry analysis techniques
Aghaeepour, Nima, Finak, Greg, Hoos, Holger, Mosmann, Tim R., Brinkman, Ryan, Gottardo, Raphael, Scheuermann, Richard H., The FlowCAP Consortium, McLachlan, Geoffrey J., Wang, Kui and The DREAM Consortium (2013). Critical assessment of automated flow cytometry analysis techniques. Nature Methods, 10 (3), 228-238. doi: 10.1038/nmeth.2365
2013
Conference Publication
On finite mixtures of skew distributions
McLachlan, Geoffrey J. and Leemaqz, Sharon X. (2013). On finite mixtures of skew distributions. 28th International Workshop on Statistical Modelling, Palermo, Italy, 8-12 July 2013. Amsterdam: Statistical Modelling Society.
2013
Book Chapter
Clustering of gene expression data via normal mixture models
McLachlan, G. J., Flack, L. K., Ng, S. K. and Wang, K. (2013). Clustering of gene expression data via normal mixture models. Statistical methods for microarray data analysis: methods and protocols. (pp. 103-119) edited by Andrei Y. Yakovlev, Lev Klebanov and Daniel Gaile. New York, NY, United States: Humana Press. doi: 10.1007/978-1-60327-337-4_7
2013
Conference Publication
A common factor-analytic model for classification
Sun, Mingzhu and McLachlan, Geoffrey J (2013). A common factor-analytic model for classification. IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2013, Shanghai China, 18 - 21 December 2013. Piscataway, NJ United States: I E E E. doi: 10.1109/BIBM.2013.6732722
2013
Journal Article
On the classification of microarray gene-expression data
Basford, Kaye E., McLachlan, Geoffrey J. and Rathnayake, Suren I. (2013). On the classification of microarray gene-expression data. Briefings in Bioinformatics, 14 (4) bbs056, 402-410. doi: 10.1093/bib/bbs056
2013
Conference Publication
Using cluster analysis to improve gene selection in the formation of discriminant rules for the prediction of disease outcomes
Ng, Shu-Kay and McLachlan, Geoffrey J. (2013). Using cluster analysis to improve gene selection in the formation of discriminant rules for the prediction of disease outcomes. IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2013, Shanghai, China, 18 - 21 December 2013. Piscataway, NJ United States: I E E E. doi: 10.1109/BIBM.2013.6732501
2013
Conference Publication
Evaluating methods of estimating missing values for three-way three-mode multi-environment trial data
Tian, Ting, McLachlan, Geoff, Dieters, Mark and Basford, Kaye (2013). Evaluating methods of estimating missing values for three-way three-mode multi-environment trial data. Biometrics by the Canals: The International Biometric Society Australasian Region Conference 2013, Mandura, WA, Australia, 1-5 December, 2013.
2013
Conference Publication
Modelling asset return using multivariate asymmetric mixture models with applications to estimation of Value-at-Risk
Lee, Sharon X. and McLachlan, Geoffrey J. (2013). Modelling asset return using multivariate asymmetric mixture models with applications to estimation of Value-at-Risk. International Congress on Modelling and Simulation, Adelaide, SA, Australia, 1/12/2013/6/12/2013. Melbourne, Australia: Modelling and Simulation Society of Australia and New Zealand.
2013
Conference Publication
Preface
Kim, Sunghoon, Li, Guo-Zheng, Ressom, Habtom, Hughes, Michael, Liu, Baoyan, McLachlan, Geoff, Liebman, Michael, Sun, Hongye and Hu, Xiaohua (2013). Preface. 2013 IEEE International Conference on Bioinformatics and Biomedicine, Shanghai, China, 18-21 December 2013. Minerals, Metals and Materials Society. doi: 10.1109/BIBM.2013.6732445
2013
Conference Publication
Spatial false discovery rate control for magnetic resonance imaging studies
Nguyen, Hien D., McLachlan, Geoffrey J., Janke, Andrew L., Cherbuin, Nicolas, Sachdev, Perminder and Anstey, Kaarin J. (2013). Spatial false discovery rate control for magnetic resonance imaging studies. International Conference on Digital Image Computing: Techniques and Applications, DICTA 2013, Hobart, TAS, 26 - 28 November 2013. Piscataway, NJ United States: I E E E. doi: 10.1109/DICTA.2013.6691531
2012
Journal Article
Clustering of time-course gene expression profiles using normal mixture models with autoregressive random effects
Wang, Kui, Ng, Shu Kay and McLachlan, Geoffrey J. (2012). Clustering of time-course gene expression profiles using normal mixture models with autoregressive random effects. Bmc Bioinformatics, 13 (1) 300, 300.1-300.14. doi: 10.1186/1471-2105-13-300
2012
Journal Article
Discriminant analysis
McLachlan, Geoffrey J. (2012). Discriminant analysis. Wiley Interdisciplinary Reviews: Computational Statistics., 4 (5), 421-431. doi: 10.1002/wics.1219
2012
Journal Article
Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages
Schroder, Kate, Irvine, Katharine M., Taylor, Martin S., Bokil, Nilesh J., Le Cao, Kim-Anh, Masterman, Kelly-Anne, Labzin, Larisa I., Semple, Colin A., Kapetanovic, Ronan, Fairbairn, Lynsey, Akalin, Altuna, Faulkner, Geoffrey J., Baillie, John Kenneth, Gongora, Milena, Daub, Carsten O., Kawaji, Hideya, McLachlan, Geoffrey J., Goldman, Nick, Grimmond, Sean M., Carninci, Piero, Suzuki, Harukazu, Hayashizaki, Yoshihide, Lenhard, Boris, Hume, David A. and Sweet, Matthew J. (2012). Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proceedings of the National Academy of Sciences of the USA, 109 (16), E944-E953. doi: 10.1073/pnas.1110156109
2012
Journal Article
Top-10 data mining case studies
Melli, Gabor, Wu, Xindong, Beinat, Paul, Bonchi, Francesco, Cao, Longbing, Duan, Rong, Faloutsos, Christos, Ghani, Rayid, Kitts, Brendan, Goethals, Bart, McLachlan, Geoff, Pei, Jian, Srivastava, Ashok and Zaiane, Osmar (2012). Top-10 data mining case studies. International Journal of Information Technology and Decision Making, 11 (2), 389-400. doi: 10.1142/S021962201240007X
2012
Book Chapter
An enduring interest in classification: supervised and unsupervised
McLachlan, G. J. (2012). An enduring interest in classification: supervised and unsupervised. Journeys to data mining: experiences from 15 renowned researchers. (pp. 147-171) edited by Mohamed Medhat Gaber. Heidelberg, Germany: Springer. doi: 10.1007/978-3-642-28047-4_12
2012
Book Chapter
The EM algorithm
Ng, Shu Kay, Krishnan, Thriyambakam and McLachlan, Geoffrey J. (2012). The EM algorithm. Handbook of Computational Statistics: Concepts and Methods. (pp. 139-172) edited by James E. Gentle, Wolfgang Karl Hardle and Yuichi Mori. Berlin & New York: Springer. doi: 10.1007/978-3-642-21551-3__6
2011
Book Chapter
The EM Algorithm
Ng, Shu Kay, Krishnan, Thriyambakam and McLachlan, Geoffrey J. (2011). The EM Algorithm. Handbook of Computational Statistics. (pp. 139-172) Berlin, Germany: Springer. doi: 10.1007/978-3-642-21551-3_6
2011
Journal Article
A very fast algorithm for matrix factorization
Nikulin, V, Huang, TH, Ng, SK, Rathnayake, SI and McLachlan, GJ (2011). A very fast algorithm for matrix factorization. Statistics and Probability Letters, 81 (7), 773-782. doi: 10.1016/j.spl.2011.02.001
2011
Journal Article
Mixtures of common t-factor analyzers for clustering high-dimensional microarray data
Baek, Jangsun and McLachlan, Geoffrey J. (2011). Mixtures of common t-factor analyzers for clustering high-dimensional microarray data. Bioinformatics, 27 (9) btr112, 1269-1276. doi: 10.1093/bioinformatics/btr112
Funding
Current funding
Past funding
Supervision
Availability
- Professor Geoffrey McLachlan is:
- Available for supervision
Before you email them, read our advice on how to contact a supervisor.
Supervision history
Current supervision
-
Doctor Philosophy
Role of Finite Mixture Models in Semi-Supervised Learning
Principal Advisor
Other advisors: Dr Sharon Lee
-
Doctor Philosophy
Learning a mineralised fault network at the Cracow Gold Mine from geologically-informed 3D synthetic seismic data
Associate Advisor
Other advisors: Dr Dion Weatherley, Professor Rick Valenta
-
Doctor Philosophy
Using statistical genetics approaches to gain insight into patterns of variation in complex traits
Associate Advisor
Other advisors: Dr Vivi Arief, Dr Quan Nguyen, Emeritus Professor Kaye Basford
-
Doctor Philosophy
Using statistical genetics approaches to gain insight into patterns of variation in complex traits
Associate Advisor
Other advisors: Dr Vivi Arief, Dr Quan Nguyen, Emeritus Professor Kaye Basford
-
Doctor Philosophy
The Application of Advanced Statistical Methods to Hyperspectral Images in Mineral Exploration
Associate Advisor
Other advisors: Dr Dion Weatherley, Professor Rick Valenta
Completed supervision
-
2024
Doctor Philosophy
Detecting the unexpected in astronomical data using complexity based approaches
Principal Advisor
-
2023
Doctor Philosophy
Improving Predictability of Minerals Processing Models by Developing a Methodology based-on Machine Learning Techniques
Principal Advisor
-
-
2015
Doctor Philosophy
Finite Mixture Models for Regression Problems
Principal Advisor
Other advisors: Dr Ian Wood
-
2014
Doctor Philosophy
Finite Mixture Modelling using Multivariate Skew Distributions
Principal Advisor
Other advisors: Dr Ian Wood
-
2012
Doctor Philosophy
Detection of Differentially Expressed Genes via Mixture Models and Cluster Analysis
Principal Advisor
Other advisors: Dr Ian Wood
-
2009
Doctor Philosophy
Statistical analysis of high-dimensional gene expression data
Principal Advisor
-
2005
Doctor Philosophy
CLUSTERING WITH MIXED VARIABLES
Principal Advisor
-
2004
Master Science
Modelling the statistical behaviour of temperature using a modified Brennan and Schwartz 1982 interest rate model
Principal Advisor
Other advisors: Associate Professor Michael Bulmer
-
2024
Doctor Philosophy
The Wealth of Features: towards a coherent cooperative game theory for feature importance
Associate Advisor
Other advisors: Associate Professor Sally Shrapnel, Dr Ian Wood
-
2019
Doctor Philosophy
Maximum pseudolikelihood estimation with Markov random fields in the segmentation of brain magnetic resonance images
Associate Advisor
Other advisors: Dr Ian Wood
-
-
2016
Doctor Philosophy
Estimation of missing values in multivariate multi-environment trial data for three-way pattern analysis
Associate Advisor
Other advisors: Emeritus Professor Kaye Basford
-
-
Doctor Philosophy
TOPOLOGICAL MODELS OF TRANSMEMBRANE PROTEINS FOR SUBCELLULAR LOCALIZATION PREDICTION
Associate Advisor
Other advisors: Associate Professor Marcus Gallagher, Professor Mikael Boden
Media
Enquiries
Contact Professor Geoffrey McLachlan directly for media enquiries about:
- Bioinformatics
- Computation - statistics
- Computer learning
- Data mining
- Gene expression data
- Image analysis - statistics
- Machine learning
- Neural networks
- Pattern recognition - statistics
- Statistical methodology
- Statistics
Need help?
For help with finding experts, story ideas and media enquiries, contact our Media team: