
Overview
Background
Professor Geoffrey McLachlan's research interests are in: data mining, statistical analysis of microarray, gene expression data, finite mixture models and medical statistics.
Professor McLachlan received his PhD from the University of Queensland in 1974 and his DSc from there in 1994. His current research projects in statistics are in the related fields of classification, cluster and discriminant analyses, image analysis, machine learning, neural networks, and pattern recognition, and in the field of statistical inference. The focus in the latter field has been on the theory and applications of finite mixture models and on estimation via the EM algorithm.
A common theme of his research in these fields has been statistical computation, with particular attention being given to the computational aspects of the statistical methodology. This computational theme extends to Professor McLachlan's more recent interests in the field of data mining.
He is also actively involved in research in the field of medical statistics and, more recently, in the statistical analysis of microarray gene expression data.
Availability
- Professor Geoffrey McLachlan is:
- Available for supervision
- Media expert
Fields of research
Qualifications
- Bachelor (Honours) of Science (Advanced), The University of Queensland
- Doctor of Philosophy, The University of Queensland
- Doctoral Diploma of Science (Advanced), The University of Queensland
- Australian Mathematical Society, Australian Mathematical Society
Works
Search Professor Geoffrey McLachlan’s works on UQ eSpace
2011
Journal Article
Classification of high-dimensional microarray data with a two-step procedure via a Wilcoxon criterion and multilayer perceptron
Nikulin, Vladimir, Huang, Tian-Hsiang and McLachlan, Geoffrey J. (2011). Classification of high-dimensional microarray data with a two-step procedure via a Wilcoxon criterion and multilayer perceptron. International Journal of Computational Intelligence and Applications, 10 (1), 1-14. doi: 10.1142/S1469026811002969
2011
Journal Article
Commentary on Steinley and Brusco (2011): Recommendations and cautions
McLachlan, Geoffrey J. (2011). Commentary on Steinley and Brusco (2011): Recommendations and cautions. Psychological Methods, 16 (1), 80-81. doi: 10.1037/a0021141
2011
Journal Article
Assessing the adequacy of Weibull survival models: a simulated envelope approach
Zhao, Yun, Lee, Andy H., Yau, Kelvin K.W. and McLachlan, Geoffrey J. (2011). Assessing the adequacy of Weibull survival models: a simulated envelope approach. Journal of Applied Statistics, 38 (10), 2089-2097. doi: 10.1080/02664763.2010.545115
2011
Book Chapter
Mixtures of factor analyzers for the analysis of high-dimensional data
McLachlan, Geoffrey J., Baek, Jangsun and Rathnayake, Suren I. (2011). Mixtures of factor analyzers for the analysis of high-dimensional data. Mixture estimation and applications. (pp. 189-212) edited by Kerrie L. Mengersen, Christian P. Robert and D. Michael Titterington. Chichester, United Kingdom: John Wiley and Sons. doi: 10.1002/9781119995678.ch9
2011
Journal Article
Testing for Group Structure in High-Dimensional Data
McLachlan, G. J. and Rathnayake, S. I. (2011). Testing for Group Structure in High-Dimensional Data. Journal of Biopharmaceutical Statistics, 21 (6), 1113-1125. doi: 10.1080/10543406.2011.608342
2010
Journal Article
Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data
Baek, Jangsun, McLachlan, Geoffrey J. and Flack, Lloyd K. (2010). Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (7) 5184847, 1298-1309. doi: 10.1109/TPAMI.2009.149
2010
Journal Article
Integrative mixture of experts to combine clinical factors and gene markers
Le Cao, Kim-Anh, Meugnier, Emmanuelle and McLachlan, Geoffrey J. (2010). Integrative mixture of experts to combine clinical factors and gene markers. Bioinformatics, 26 (9) btq107, 1192-1198. doi: 10.1093/bioinformatics/btq107
2010
Conference Publication
Automated high-dimensional flow cytometric data analysis
Pyne, Saumyadipta, Hu, Xinli, Wang, Kui, Rossin, Elizabeth, Lin, Tsung-I, Maier, Lisa, Baecher-Allan, Clare, McLachlan, Geoffrey, Tamayo, Pablo, Hafler, David, De Jager, Philip and Mesirov, Jill (2010). Automated high-dimensional flow cytometric data analysis. 14th Annual International Conference on Research in Computational Molecular Biology, Lisbon, Portugal, 25-28 April 2010. Heidelberg, Germany: Springer. doi: 10.1007/978-3-642-12683-3_41
2010
Conference Publication
On the gradient-based algorithm for matrix factorization applied to dimensionality reduction
Nikulin, Vladimir and McLachlan, Geoffrey J. (2010). On the gradient-based algorithm for matrix factorization applied to dimensionality reduction. BIOINFORMATICS 2010: 1st International Conference on Bioinformatics, Valencia, Spain, 20-23 January 2010. Portugal: Institute for Systems and Technologies of Information, Control and Communication.
2010
Conference Publication
On relations between genes and metagenes obtained via gradient-based matrix factorization
Huang, Tian-Hsiang, Nikulin, Vladimir and McLachlan, Geoffrey J. (2010). On relations between genes and metagenes obtained via gradient-based matrix factorization. 2010 IEEE/ICME International Conference on Complex Medical Engineering, Gold Coast, Australia, 13-15 July 2010. Piscataway, United States: IEEE Computer Society. doi: 10.1109/ICCME.2010.5558880
2010
Journal Article
Autoantibody profiling to identify biomarkers of key pathogenic pathways in mucinous ovarian cancer
Tang, Liangdan, Yang, Junzheng, Ng, Shu-Kay, Rodriguez, Noah, Choi, Pui-Wah, Vitonis, Allison, Wang, Kui, McLachlan, Geoffrey J., Caiazzo, Robert J., Liu, Brian C.-S., Welch, Brian C.-S., Cramer, Daniel W., Berkowitz, Ross S. and Ng, Shu-Wing (2010). Autoantibody profiling to identify biomarkers of key pathogenic pathways in mucinous ovarian cancer. European Journal of Cancer, 46 (1), 170-179. doi: 10.1016/j.ejca.2009.10.003
2010
Conference Publication
Clustering of High-Dimensional Data via Finite Mixture Models
McLachlan, Geoff J. and Baek, Jangsun (2010). Clustering of High-Dimensional Data via Finite Mixture Models. 32nd Annual Conference of the German-Classification-Society, Hamburg Germany, Jul 16-18, 2008. BERLIN: SPRINGER-VERLAG BERLIN. doi: 10.1007/978-3-642-01044-6_3
2010
Conference Publication
RSCTC 2010 Discovery Challenge: Mining DNA microarray data for medical diagnosis and treatment
Wojnarski, Marcin, Janusz, Andrzej, Nyugen, Hung Son, Bazan, Jan, Luo, ChuanJiang, Chen, Ze, Hu, Feng, Wang, Guoyin, Guan, Lihe, Luo, Huan, Gao, Juan, Shen, Yuanxia, Nikulin, Vladimir, Huang, Tian-Hsiang, McLachlan, Geoffrey J., Bosnjak, Matko and Gamberger, Dragan (2010). RSCTC 2010 Discovery Challenge: Mining DNA microarray data for medical diagnosis and treatment. 7th International Conference on Rough Sets and Current Trends in Computing (RSCTC 2010), Warsaw, Poland, 28-30 June 2010. Heidelberg, Germany: Springer. doi: 10.1007/978-3-642-13529-3_3
2010
Book Chapter
Expert networks with mixed continuous and categorical feature variables: A location modeling approach.
Ng, Shu-Kay and McLachlan, Geoffrey J. (2010). Expert networks with mixed continuous and categorical feature variables: A location modeling approach.. Machine learning research progress. (pp. 355-368) edited by Hannah Peters and Mia Vogel. New York, U.S.A.: Nova Science.
2010
Conference Publication
Penalized principal component analysis of microarray data
Nikulin, Vladimir and McLachlan, Geoffrey J. (2010). Penalized principal component analysis of microarray data. 6th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2009, Genoa, Italy, 15-17 October, 2009. Germany: Springer. doi: 10.1007/978-3-642-14571-1_7
2010
Book Chapter
Clustering of high-dimensional data via finite mixture models
McLachlan, Geoff J. and Baek, Jangsun (2010). Clustering of high-dimensional data via finite mixture models. Advances in Data Analysis, Business Intelligence: Proceedings of the 32nd Annual Conference of the Gesellschaft für Klassifikation e.V., Joint Conference with the British Classification Society (BCS) and the Dutch/Flemish Classification Society (VOC Helmut-Schmidt-University, Hamburg, July 16–18, 2008. (pp. 33-44) edited by Andreas Fink, Berthold Lausen, Wilfried Seidel and Alfred Ultsch. Heidelberg, Germany: Springer-Verlag. doi: 10.1007/978-3-642-01044-6
2010
Conference Publication
Use of mixture models in multiple hypothesis testing with applications in bioinformatics
McLachlan, Geoffrey J. and Wockner, Leesa (2010). Use of mixture models in multiple hypothesis testing with applications in bioinformatics. Classification as a Tool for Research (GfKl 2009), Dresden, Germany, 13-18 March 2009. doi: 10.1007/978-3-642-10745-0-18
2010
Conference Publication
A comparative study of two matrix factorization methods applied to the classification of gene expression rate
Nikulin, Vladimir, Huang, Tian-Hsiang and McLachlan, Geoffrey J. (2010). A comparative study of two matrix factorization methods applied to the classification of gene expression rate. IEEE International Conference on Bioinformatics & Biomedicine, Hong Kong, 18-21 December 2010. Los Alamitos, CA, U.S.A.: IEEE Computer Society. doi: 10.1109/bibm.2010.5706640
2010
Conference Publication
Identifying fibre bundles with regularized k-means clustering applied to grid-based data
Nikulin, Vladimir and McLachlan, Geoffrey J. (2010). Identifying fibre bundles with regularized k-means clustering applied to grid-based data. 2010 International Joint Conference on Neural Networks (IJCNN 2010), Barcelona, Spain, 18-23 July 2010. United States: IEEE Computer Society. doi: 10.1109/IJCNN.2010.5596562
2010
Book Chapter
Clustering of high-dimensional and correlated data
McLachlan, Geoffrey J., Ng, Shu-Kay and Wang, K. (2010). Clustering of high-dimensional and correlated data. Data Analysis and Classification: Proceedings of the 6th Conference of the Classification and Data Analysis Group of the SocietàItaliana di Statistica, Macerata, Italy 12-14 September, 2007. (pp. 3-11) edited by Francesco Palumbo, Carlo Natale Lauro and Michael J. Greenacre. Berlin; Heidelberg, Germany: Springer - Verlag. doi: 10.1007/978-3-642-03739-9_1
Funding
Current funding
Past funding
Supervision
Availability
- Professor Geoffrey McLachlan is:
- Available for supervision
Before you email them, read our advice on how to contact a supervisor.
Supervision history
Current supervision
-
Doctor Philosophy
Role of Finite Mixture Models in Semi-Supervised Learning
Principal Advisor
Other advisors: Dr Sharon Lee
-
Doctor Philosophy
Using statistical genetics approaches to gain insight into patterns of variation in complex traits
Associate Advisor
Other advisors: Dr Vivi Arief, Dr Quan Nguyen, Emeritus Professor Kaye Basford
-
Doctor Philosophy
Learning a mineralised fault network at the Cracow Gold Mine from geologically-informed 3D synthetic seismic data
Associate Advisor
Other advisors: Dr Dion Weatherley, Professor Rick Valenta
-
Doctor Philosophy
The Application of Advanced Statistical Methods to Hyperspectral Images in Mineral Exploration
Associate Advisor
Other advisors: Dr Dion Weatherley, Professor Rick Valenta
-
Doctor Philosophy
Using statistical genetics approaches to gain insight into patterns of variation in complex traits
Associate Advisor
Other advisors: Dr Vivi Arief, Dr Quan Nguyen, Emeritus Professor Kaye Basford
Completed supervision
-
2024
Doctor Philosophy
Detecting the unexpected in astronomical data using complexity based approaches
Principal Advisor
-
2023
Doctor Philosophy
Improving Predictability of Minerals Processing Models by Developing a Methodology based-on Machine Learning Techniques
Principal Advisor
-
-
2015
Doctor Philosophy
Finite Mixture Models for Regression Problems
Principal Advisor
Other advisors: Dr Ian Wood
-
2014
Doctor Philosophy
Finite Mixture Modelling using Multivariate Skew Distributions
Principal Advisor
Other advisors: Dr Ian Wood
-
2012
Doctor Philosophy
Detection of Differentially Expressed Genes via Mixture Models and Cluster Analysis
Principal Advisor
Other advisors: Dr Ian Wood
-
2009
Doctor Philosophy
Statistical analysis of high-dimensional gene expression data
Principal Advisor
-
2005
Doctor Philosophy
CLUSTERING WITH MIXED VARIABLES
Principal Advisor
-
2004
Master Science
Modelling the statistical behaviour of temperature using a modified Brennan and Schwartz 1982 interest rate model
Principal Advisor
Other advisors: Associate Professor Michael Bulmer
-
2024
Doctor Philosophy
The Wealth of Features: towards a coherent cooperative game theory for feature importance
Associate Advisor
Other advisors: Associate Professor Sally Shrapnel, Dr Ian Wood
-
2019
Doctor Philosophy
Maximum pseudolikelihood estimation with Markov random fields in the segmentation of brain magnetic resonance images
Associate Advisor
Other advisors: Dr Ian Wood
-
-
2016
Doctor Philosophy
Estimation of missing values in multivariate multi-environment trial data for three-way pattern analysis
Associate Advisor
Other advisors: Emeritus Professor Kaye Basford
-
-
Doctor Philosophy
TOPOLOGICAL MODELS OF TRANSMEMBRANE PROTEINS FOR SUBCELLULAR LOCALIZATION PREDICTION
Associate Advisor
Other advisors: Associate Professor Marcus Gallagher, Professor Mikael Boden
Media
Enquiries
Contact Professor Geoffrey McLachlan directly for media enquiries about:
- Bioinformatics
- Computation - statistics
- Computer learning
- Data mining
- Gene expression data
- Image analysis - statistics
- Machine learning
- Neural networks
- Pattern recognition - statistics
- Statistical methodology
- Statistics
Need help?
For help with finding experts, story ideas and media enquiries, contact our Media team: