
Overview
Background
Professor Pettit leads the Bones and Immunology Research Group at Mater Research Institute-UQ and is Director of Biomedical Research for Mater Research. Professor Pettit has led multidisciplinary research discovering intersecting biological mechanisms across the fields of immunology, rheumatology, cancer biology, haematology and bone biology. Professor Pettit is currently a UQ Amplify recipient associated with an ARC Future Fellowship, 2017-2020 and CIA on an NHMRC Ideas Grant, 2022-25. Major contributions led by Professor Pettit include the paradigm shifting discovery of a novel population of resident macrophages, osteal macrophages (osteomacs), and their role in promoting bone formation and bone regeneration after injury. Her team have published over 17 manuscripts based on this original discovery (with over 1700 citations) including translation of this basic research discovery toward eluciating novel disease mechanism from cancer bone metastasis to osteoporosis. This also led to the novel discovery of bone marrow resident macrophage contributions to supporting blood stem cells niches and the key role that these cells play in protecting this vital niche from cancer therapies. Bone marrow and specifically haematopoietic stem cell damage is one of the most serious and life-threatening side effects of cancer therapies. Here discoveries are cited in over 117 patent documents and she is currently collaborating with a major pharmaceutical partner.
Professor Pettit's leadership and achievements have been recognised through multiple awards including the 2019 UQ Faculty of Medicine Leader of the Year (Academic), Women in Technology 2018 Life Sciences Outstanding Achievement Award and becoming a Fellow of the American Society of Bone and Mineral Research. Professor Pettit has been invited to give numerous presentations at national and international conferences including Seoul Symposium on Bone Health, Asia-Pacific League of Associations for Rheumatology Congress and a prestigious American Society of Bone and Mineral Research Meet-the-Professor session. Professor Pettit is and Associate Editor for the Journal of Bone and Mineral Research, is an past Council member for the Australian and New Zealand Bone and Mineral Society, and chairs or serves on numerous committees including the Association of Australian Medical Research Institutes Gender Equity, Diversity and Inclusion Committee. PhD candidates under Professor Pettit's supervision have all been supported by scholarships (including 2 x NHMRC), received numerous local and national awards (e.g. Dr Alexander, ASMR QLD Premier Postgraduate Award, 2011 and Dr Lena Batoon won the UQ Faculty of Medicine Graduate of the Year Award, 2021), all had high quality first author publications at completion and 2 received UQ Dean’s Commendations.
Availability
- Professor Allison Pettit is:
- Available for supervision
- Media expert
Fields of research
Qualifications
- Bachelor (Honours) of Science (Advanced), Griffith University
- Doctor of Philosophy, The University of Queensland
Research impacts
- Discovery that the transcription factor RelB is a critical molecular mediator of dendritic cell antigen presentation and extended this to show that RelB expressing dendritic cells have critical roles in the initiation and perpetuation of joint inflammation in inflammatory arthritis. These discoveries were used by my principal HDR supervisor (Professor Ranjeny Thomas; https://researchers.uq.edu.au/researcher/396) as the knowledge platform to develop the first vaccine therapy for rheumatoid arthritis.
- Demonstration that RANKL is the essential and rate limiting cytokine required for osteoclast formation and focal bone erosion in inflammatory arthritis. This research output influenced pharmaceutical industry development of the blockbuster drug Denosumab.
- Leadership of the paradigm shifting discovery of a novel population of resident macrophages, osteal macrophages (osteomacs), and their novel role in promoting osteoblastic bone formation and bone regeneration after injury. This has completely changed how the bone and mineral/orthopaedic research field views macrophage contributions to bone health and disease and has influence parallel fields including tissue regeneration and biomaterials.
- Discovery that macrophages regulate haematopoietic stem cell (HSC) niche homeostasis. The landmark paper on which I am co-first author is a Web of Science highly cited paper (top 1% or research outputs) that has been cited by papers spanning 46 research fields. We have since extended this discovery to demonstrate that resident macrophage resilience to lethal radiation is essential for bone marrow recovery and successful HSC engraftment and haematopoietic reconstitution post-HSC transplantation (senior author manuscript in Blood, 2018).
- Exposed that resident tissue macropahges are fragmented during tissue single cell suspension generation, leaving behind encapsulated remnants of themselves that have detectable cell membrane proteins, intracellur proteins and reporter molecules and RNAs. This undermindes the accuracy of burgeoning high parameter technologies focussed on single cell analysis (e.g. flow cytometry, single cell RNAseq, CITESeq, etc) as depending on the tissue disaggregation and analysis strategy, macrophages are under-represented relative to their abundance in tissues and/or macrophage-expressed genes are mistakenly attributed to non-macrophage cells and vice versa
Works
Search Professor Allison Pettit’s works on UQ eSpace
2010
Journal Article
Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs
Winkler, Ingrid G., Sims, Natalie A., Pettit, Allison R., Barbier, Valérie, Nowlan, Bianca, Helwani, Falak, Poulton, Ingrid J., van Rooijen, Nico van, Alexander, Kylie A., Raggatt, Liza J. and Levesque, Jean-Pierre (2010). Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood, 116 (23), 4815-4828. doi: 10.1182/blood-2009-11-253534
2010
Journal Article
An antibody against the colony-stimulating factor 1 receptor (CSF1R) depletes the resident subset of monocytes and tissue and tumor-associated macrophages but does not inhibit inflammation
MacDonald, Kelli P. A., Palmer, James S., Cronau, Stephen, Seppanen, Elke Jane, Olver, Stuart, Raffelt, Neil C., Kuns, Rachel, Pettit, Allison R., Clouston, Andrew, Wainwright, Brandon J., Branstetter, Dan, Smith, Jeffrey, Paxton, Raymond J., Cerretti, Douglas Pat, Bonham, Lynn, Hill, Geoffrey R. and Hume, David A. (2010). An antibody against the colony-stimulating factor 1 receptor (CSF1R) depletes the resident subset of monocytes and tissue and tumor-associated macrophages but does not inhibit inflammation. Blood, 116 (19), 3955-3963. doi: 10.1182/blood-2010-02-266296
2010
Journal Article
Soluble lymphotoxin is an important effector molecule in GVHD and GVL
Markey, KA, Burman, AC, Banovic, T, Kuns, RD, Raffelt, NC, Rowe, V, Olver, SD, Don, ALJ, Morris, ES, Pettit, AR, Wilson, YA, Robb, RJ, Randall, LM, Korner, H, Engwerda, CR, Clouston, AD, MacDonald, KPA and Hill, GR (2010). Soluble lymphotoxin is an important effector molecule in GVHD and GVL. Blood, 115 (1), 122-132. doi: 10.1182/blood-2009-01-199927
2010
Conference Publication
DEPLETION OF BONE MARROW PHAGOCYTES CAUSES THE MOBILIZATION OF LONG-TERM RECONSTITUTING HEMATOPOIETIC STEM CELLS
Jacobsen, RN, Levesque, JP, Barbier, V, Raggatt, LJ and Pettit, AR (2010). DEPLETION OF BONE MARROW PHAGOCYTES CAUSES THE MOBILIZATION OF LONG-TERM RECONSTITUTING HEMATOPOIETIC STEM CELLS. 39th Annual Scientific Meeting of the ISEH - Society-for-Hematology-and-Stem-Cells, Melbourne AUSTRALIA, SEP 15-18, 2010. NEW YORK: ELSEVIER SCIENCE INC.
2010
Conference Publication
Both DKK-1 and sost are suppressed during late stage disease development in a mouse model of ankylosing spondylitis
Thomas, G., Duan, R., Pettit, A., Glant, T. and Brown, M. (2010). Both DKK-1 and sost are suppressed during late stage disease development in a mouse model of ankylosing spondylitis. Seventh International Congress on Spondyloarthropathies, Gent, Belgium, 7 - 9 October 2010. Ospedaletto, PI, Italy: Pacini Editore SpA.
2009
Journal Article
Responses in vivo to purified poly (3-hydroxybutyrate-co-3-hydroxyvalerate) implanted in a murine tibial defect model
Wu, A. C. K., Pettit, A. R., Toulson, S., Grondahl, L., Mackie, E. J. and Cassady, A. I. (2009). Responses in vivo to purified poly (3-hydroxybutyrate-co-3-hydroxyvalerate) implanted in a murine tibial defect model. Journal of Biomedical Materials Research Part A, 91A (3), 845-854. doi: 10.1002/jbm.a.32238
2009
Journal Article
Conventional dendritic cells are the critical donor APC presenting alloantigen after experimental bone marrow transplantation
Markey, KA, Banovic, T, Kuns, RD, Olver, SD, Don, ALJ, Raffelt, NC, Wilson, YA, Raggatt, LJ, Pettit, AR, Bromberg, JS, Hill, GR and MacDonald, KPA (2009). Conventional dendritic cells are the critical donor APC presenting alloantigen after experimental bone marrow transplantation. BLOOD, 113 (22), 5644-5649. doi: 10.1182/blood-2008-12-191833
2009
Conference Publication
Osteomacs: Osteoclast Precursors During Inflammatory Bone Disease but Regulators of Physiologic Bone Remodeling
Raggatt, L., Chang, M., Alexander, K., Maylin, E., Walsh, N., Gravallese, E., Hume, D. and Pettit, A. (2009). Osteomacs: Osteoclast Precursors During Inflammatory Bone Disease but Regulators of Physiologic Bone Remodeling. Australian Society of Bone and Mineral Research (ASBMR) 31st Annual Meeting, Denver, CO, United States, 11-15 September, 2009. United States: American Society for Bone and Mineral Research.
2009
Conference Publication
Osteomacs are critical for optimal intramembranous bone formation in a tibial defect model of bone healing
Alexander, K. A., Raggatt, L. J., Chang, M. K., Maylin, E. R., Muller, R., Kohler, T., Wu, A. C. K., Hume, D. A. and Pettit, A. R. (2009). Osteomacs are critical for optimal intramembranous bone formation in a tibial defect model of bone healing. 2nd Joint Meeting of the International Bone & Mineral Society and the Australian & New Zealand Bone & Mineral Society, Sydney, NSW, Australia, 21-25 March 2009. United States: Elsevier. doi: 10.1016/j.bone.2009.01.076
2009
Conference Publication
Osteomacs maintain the endosteal hematopoietic stem cell niche and participate in mobilization
Pettit, A. R., Sims, N. A., Winkler, I. G., Alexander, K. A., Helwani, F., Raggatt, L. J. and Levesque, J. P. (2009). Osteomacs maintain the endosteal hematopoietic stem cell niche and participate in mobilization. 2nd Joint Meeting of the International Bone and Mineral Society/Australian New Zealand Bone and Mineral Society, Sydney, Australia, 21-25 March, 2009. United States: Elsevier Inc.. doi: 10.1016/j.bone.2009.01.082
2009
Conference Publication
Endosteal Macrophages Maintain the Hematopoietic Stem Cell (Hsc) Niche and Participate in Hsc Mobilization Induced by G-Csf or Chemotherapy
Levesque, J. P., Raggatt, L. J., Pettit, A. R., Sims, N. A., Bendall, L. J. and Helwani, F. (2009). Endosteal Macrophages Maintain the Hematopoietic Stem Cell (Hsc) Niche and Participate in Hsc Mobilization Induced by G-Csf or Chemotherapy. 38th Annual Scientific Meeting of the ISEH Society for Hematology and Stem Cells, Athens, Greece, 9-12 September 2009. NEW YORK: ELSEVIER SCIENCE INC.
2009
Conference Publication
Osteomacs are Critical for Optimal Intramembranous Bone Formation in a Tibial Defect Model of Bone Healing
Alexander, K. A., Raggatt, L., Chang, M., Maylin, E., Muller, R., Kohler, T., Wu, A., Hume, D. and Pettit, A. (2009). Osteomacs are Critical for Optimal Intramembranous Bone Formation in a Tibial Defect Model of Bone Healing. Australian Society of Bone and Mineral Research (ASBMR) 31st Annual Meeting, Denver, Colorado, USA, 11-15 September, 2009. United States: American Society for Bone and Mineral Research.
2009
Conference Publication
Osteomacs: osteoclast precursors during inflammatory bone disease but regulators of physiologic bone remodelling
Raggatt, L. J., Chang, M. K., Alexander, K. A., Maylin, E. R., Walsh, N. C., Gravallese, E. M., Hume, D. A. and Pettit, A. R. (2009). Osteomacs: osteoclast precursors during inflammatory bone disease but regulators of physiologic bone remodelling. 2nd Joint Meeting of the International Bone & Mineral Society and the Australian & New Zealand Bone & Mineral Society, Sydney, Australia, 21-25 March, 2009. New York: Elsevier Science. doi: 10.1016/j.bone.2009.01.300
2009
Conference Publication
Conventional dendritic cells are the critical donor APC presenting alloantigen after BMT
Markey, K, Banovic, T, Kuns, R, Raffelt, N, Olver, S, Don, A, Wilson, Y, Pettit, A, Bromberg, J, Hill, G and MacDonald, K (2009). Conventional dendritic cells are the critical donor APC presenting alloantigen after BMT. 35th Annual Meeting of the European-Group-for-Blood-and-Marrow-Transplantation, Goteborg Sweden, Mar 29-Apr 01, 2009. LONDON: NATURE PUBLISHING GROUP.
2008
Journal Article
Osteal macrophages: A new twist on coupling during bone dynamics
Pettit, A. R., Chang, M. K., Hume, D. A. and Raggatt, L. J. (2008). Osteal macrophages: A new twist on coupling during bone dynamics. Bone, 43 (6), 976-982. doi: 10.1016/j.bone.2008.08.128
2008
Journal Article
Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and In Vivo
Chang, Ming K., Raggatt, Liza-Jane, Alexander, Kylie A., Kuliwaba, Julia S., Fazzalari, Nicola L., Schroder, Kate, Maylin, Erin R., Ripoll, Vera M, Hume, David A. and Pettit, Allison R. (2008). Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and In Vivo. The Journal of Immunology, 181 (2), 1232-1244. doi: 10.4049/jimmunol.181.2.1232
2008
Journal Article
Re: Structural and cellular differences between metaphyseal and diaphyseal periosteum in different-aged rats
Pettit, Allison R., Hume, David A. and Raggatt, Liza-Jane (2008). Re: Structural and cellular differences between metaphyseal and diaphyseal periosteum in different-aged rats. Bone, 42 (4), 825-825. doi: 10.1016/j.bone.2007.12.217
2008
Journal Article
Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB
Ripoll, V. M, Meadows, N. A., Raggatt, L. J., Chang, M. K., Pettit, A. R., Cassady, A. I. and Hume, D. A. (2008). Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB. Gene, 413 (1-2), 32-41. doi: 10.1016/j.gene.2008.01.014
2008
Conference Publication
Primary murine osteoblast cultures contain macrophages that enhance osteoblast mineralisation
Chang, M. K., Pettit, A. R., Schroder, K., Ripoll, V. M., Alexander, K. A., Hume, D. A. and Raggatt, L. (2008). Primary murine osteoblast cultures contain macrophages that enhance osteoblast mineralisation. ECTS 35th European Symposium on Calcified Tissues, Barcelona, Spain, 24-28 May 2008. New York, NY, U.S.A.: Springer New York. doi: 10.1007/s00223-008-9118-5
2008
Conference Publication
Primary murine osteoblast cultures contain macrophages that enhance osteoblast mineralization
Alexander, K. A., Chang, M. K., Hume, D. A., Pettit, A. R., Raggatt, L., Ripoli, V. M. and Schroder, K. (2008). Primary murine osteoblast cultures contain macrophages that enhance osteoblast mineralization. 35th European Symposium on Calcified Tissues, Barcelona, Spain, 24-28 May 2008. New York, USA: Springer. doi: 10.1007/s00223-008-9118-5
Funding
Current funding
Supervision
Availability
- Professor Allison Pettit is:
- Available for supervision
Before you email them, read our advice on how to contact a supervisor.
Available projects
-
Deconvoluting Tissue Resident Macrophage Biology
Project only open to Australian Domestic Applicants at this time with competitive stipend on offer.
Analysis of single cell preparations from tissues is a mainstay of biological discovery research. Particularly in the current era of costly investment in increasingly high dimensional analysis of single cell samples toward generation of publicly available data sets. The team exposed an unrecognised technical phenomenon that has high potential to substantively compromise single cell data accuracy across a broad range of research fields including immunology and haematology. Specifically, tissue resident macrophages are fragmented during haematopoietic single cell suspension preparation and leave behind encapsulated remnants containing membrane and cytoplasmic molecules attached to other cells they were interacting with in situ. This phenomenon profoundly compromises accurate analysis of the data generated. Using this unique perspective, the project aims to 1) expose how widespread this phenomenon is in a diverse range of tissues across age; 2) develop optimised approaches to eliminate macrophage fragmentation during haematopoietic tissue single cell preparation; and 3) take advantage of this technical phenomenon to achieve a substantive knowledge gain in understanding bone marrow macrophage specialisation.
The outcome of this research is a broad spectrum increase in the fidelity of biology research that utilises this common approach. This will elevate translatability of research outcomes and ultimately public confidence in the Australian biology research sector. It will create opportunity to collaborate with industry toward improved development of relevant reagents and instrument technology and inform development of digital tools to deconvolute this phenomenon when analysing big data sets.
Supervision history
Current supervision
-
Doctor Philosophy
Deconvoluting Tissue Resident Macrophage Biology
Principal Advisor
Other advisors: Dr Katharine Irvine, Dr Susan Millard
-
Doctor Philosophy
Advanced optical imaging of bone marrow macrophages.
Associate Advisor
Other advisors: Professor Jennifer Stow
-
Doctor Philosophy
Characterisation of sulfate deficiency on preterm neonatal bone growth and development.
Associate Advisor
Other advisors: Dr Yvonne Eiby, Dr Susan Millard, Dr Paul Dawson
Completed supervision
-
2021
Doctor Philosophy
Osteal macrophages as therapeutic targets for fracture repair
Principal Advisor
Other advisors: Dr Liza Raggatt, Dr Susan Millard
-
2018
Doctor Philosophy
The role of macrophages in facilitating haematopoietic stem cell engraftment and reconstitution
Principal Advisor
Other advisors: Professor Jean-Pierre Levesque, Dr Liza Raggatt
-
2010
Doctor Philosophy
Osteal macrophages (osteomacs) are pivotal for intramembranous bone formation in vivo: Osteomacs facilitate osteoblast maintenance in vivo and enhance osteoblast-mediated bone deposition in a murine model of bone healing
Principal Advisor
Other advisors: Professor David Hume, Dr Liza Raggatt
-
2023
Doctor Philosophy
Deciphering the Influence of Macrophages on Endothelial Progenitors
Associate Advisor
Other advisors: Dr Simranpreet Kaur, Professor Antje Blumenthal, Professor Kiarash Khosrotehrani
-
2020
Doctor Philosophy
Safer conditioning for antigen-encoding bone marrow transfer to induce immune tolerance
Associate Advisor
-
2019
Doctor Philosophy
Biomimetic Multilayered Nano-Fibrous Scaffolds for Guided Bone Regeneration
Associate Advisor
Other advisors: Professor Justin Cooper-White
-
2016
Doctor Philosophy
Determining the mechanisms underlying multicentric carpotarsal osteolysis and osteogenesis imperfecta type V
Associate Advisor
-
2015
Doctor Philosophy
Inflammation-driven bone formation in ankylosing spondylitis: Characterisation of the proteoglycan-induced spondylitis mouse model
Associate Advisor
-
2009
Doctor Philosophy
Role of macrophages, residing on the bone surface, in bone remodelling and repair
Associate Advisor
Other advisors: Professor David Hume, Dr Liza Raggatt
Media
Enquiries
Contact Professor Allison Pettit directly for media enquiries about:
- Bone Marrow Transplantation
- Osteoporosis Fragility Fracture
- Tissue regeneration
Need help?
For help with finding experts, story ideas and media enquiries, contact our Media team: