Multifunctional and Multimodal Theranostics: Manipulating Material Properties for Advanced Diagnostics (2014-2016)
Abstract
The utilisation of polymers in nanomedicine requires a bottom-up approach, where the fundamental chemistry is well-established and understood before it enables an application. This project develops branched polymers as new nanomaterials for theranostics; imaging modalities that 'switch-on' when miRNA is released will quantify how much nanomaterial gets to a specific site, while a built-in sensor based on physical changes in the nanomaterial will measure the onset and progression of necrosis. The aim is to develop a fundamental understanding of how polymer architecture and functionality can be utilised to drive device performance, providing a platform to probe new technology and methodologies for development of next generation theranostics.