Skip to menu Skip to content Skip to footer

Fluid Transport in Materials of Nanoscale Dimensions (2021-2024)

Abstract

This project aims to transform the modelling of fluid transport in materials of nanoscale dimension by determining the coupled interfacial heat and mass-transfer barriers, which critically influence the transport. The outcome will not only be new knowledge on the effects of inherent structural distortion and of the barriers on the fluid flow, but also cutting-edge techniques to estimate system size-dependent transport coefficients in nanoscale systems. These will be achieved through a combination of targeted molecular dynamics simulations and experiment, and will have far-reaching implications for nanotechnology and emerging processes in catalysis, gas separation, human health and nanofluidics, and enable design of more efficient systems.

Experts

Emeritus Professor Suresh Bhatia

Affiliate of Australian Research Council Centre of Excellence for Green Electrochemical Transformati
ARC COE for Green Electrochemical Transformation of Carbon Dioxide
Faculty of Engineering, Architecture and Information Technology
Emeritus/Emerita/Emeritx Professor
School of Chemical Engineering
Faculty of Engineering, Architecture and Information Technology
Suresh Bhatia
Suresh Bhatia