Skip to menu Skip to content Skip to footer

2024

Journal Article

Distinct roles of SOX9 in self-renewal of progenitors and mesenchymal transition of the endothelium

Zhao, Jilai, Sormani, Laura, Jacquelin, Sebastien, Li, Haiming, Styke, Cassandra, Zhou, Chenhao, Beesley, Jonathan, Oon, Linus, Kaur, Simranpreet, Sim, Seen-Ling, Wong, Ho Yi, Dight, James, Hashemi, Ghazaleh, Shafiee, Abbas, Roy, Edwige, Patel, Jatin and Khosrotehrani, Kiarash (2024). Distinct roles of SOX9 in self-renewal of progenitors and mesenchymal transition of the endothelium. Angiogenesis, 27 (3), 1-16. doi: 10.1007/s10456-024-09927-7

Distinct roles of SOX9 in self-renewal of progenitors and mesenchymal transition of the endothelium

2022

Journal Article

Macrophages in skin wounds: functions and therapeutic potential

Sim, Seen Ling, Kumari, Snehlata, Kaur, Simranpreet and Khosrotehrani, Kiarash (2022). Macrophages in skin wounds: functions and therapeutic potential. Biomolecules, 12 (11) 1659, 1-31. doi: 10.3390/biom12111659

Macrophages in skin wounds: functions and therapeutic potential

2022

Journal Article

Myeloid Wls expression is dispensable for skin wound healing and blood vessel regeneration

Sim, Seen Ling, Blumenthal, Antje, Kaur, Simranpreet and Khosrotehrani, Kiarash (2022). Myeloid Wls expression is dispensable for skin wound healing and blood vessel regeneration. Frontiers in Endocrinology, 13 957833, 957833. doi: 10.3389/fendo.2022.957833

Myeloid Wls expression is dispensable for skin wound healing and blood vessel regeneration

2021

Journal Article

Fragmentation of tissue-resident macrophages during isolation confounds analysis of single-cell preparations from mouse hematopoietic tissues

Millard, Susan M., Heng, Ostyn, Opperman, Khatora S., Sehgal, Anuj, Irvine, Katharine M., Kaur, Simranpreet, Sandrock, Cheyenne J., Wu, Andy C., Magor, Graham W., Batoon, Lena, Perkins, Andrew C., Noll, Jacqueline E., Zannettino, Andrew C.W., Sester, David P., Levesque, Jean-Pierre, Hume, David A., Raggatt, Liza J., Summers, Kim M. and Pettit, Allison R. (2021). Fragmentation of tissue-resident macrophages during isolation confounds analysis of single-cell preparations from mouse hematopoietic tissues. Cell Reports, 37 (8) 110058, 110058. doi: 10.1016/j.celrep.2021.110058

Fragmentation of tissue-resident macrophages during isolation confounds analysis of single-cell preparations from mouse hematopoietic tissues

2021

Journal Article

Osteal macrophages support osteoclast‐mediated resorption and contribute to bone pathology in a postmenopausal osteoporosis mouse model

Batoon, Lena, Millard, Susan M., Raggatt, Liza J., Wu, Andy C., Kaur, Simranpreet, Sun, Lucas W.H., Williams, Kyle, Sandrock, Cheyenne, Ng, Pei Ying, Irvine, Katharine M., Bartnikowski, Michal, Glatt, Vaida, Pavlos, Nathan J. and Pettit, Allison R. (2021). Osteal macrophages support osteoclast‐mediated resorption and contribute to bone pathology in a postmenopausal osteoporosis mouse model. Journal of Bone and Mineral Research, 36 (11), 2214-2228. doi: 10.1002/jbmr.4413

Osteal macrophages support osteoclast‐mediated resorption and contribute to bone pathology in a postmenopausal osteoporosis mouse model

2021

Journal Article

Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors

Zhao, Jilai, Patel, Jatin, Kaur, Simranpreet, Sim, Seen-Ling, Wong, Ho Yi, Styke, Cassandra, Hogan, Isabella, Kahler, Sam, Hamilton, Hamish, Wadlow, Racheal, Dight, James, Hashemi, Ghazaleh, Sormani, Laura, Roy, Edwige, Yoder, Mervin C., Francois, Mathias and Khosrotehrani, Kiarash (2021). Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors. Nature Communications, 12 (1) 2564, 1-17. doi: 10.1038/s41467-021-22717-9

Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors

2021

Journal Article

Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice

Kaur, Simranpreet, Sehgal, Anuj, Wu, Andy C., Millard, Susan M., Batoon, Lena, Sandrock, Cheyenne J., Ferrari-Cestari, Michelle, Levesque, Jean-Pierre, Hume, David A., Raggatt, Liza J. and Pettit, Allison R. (2021). Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice. Journal of Hematology and Oncology, 14 (1) 3, 1-19. doi: 10.1186/s13045-020-00997-w

Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice

2018

Journal Article

Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment

Kaur, Simranpreet, Raggatt, Liza J., Millard, Susan M., Wu, Andy C., Batoon, Lena, Jacobsen, Rebecca N., Winkler, Ingrid G., MacDonald, Kelli P., Perkins, Andrew C., Hume, David A., Levesque, Jean-Pierre and Pettit, Allison R. (2018). Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment. Blood, 132 (7), 735-749. doi: 10.1182/blood-2018-01-829663

Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment

2017

Journal Article

CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair

Batoon, Lena, Millard, Susan Marie, Wullschleger, Martin Eduar, Preda, Corina, Wu, Andy Chiu-Ku, Kaur, Simranpreet, Tseng, Hsu-Wen, Hume, David Arthur, Levesque, Jean-Pierre, Raggatt, Liza Jane and Pettit, Allison Robyn (2017). CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials, 196, 51-66. doi: 10.1016/j.biomaterials.2017.10.033

CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair

2016

Journal Article

Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches

Kaur, Simranpreet, Raggatt, Liza Jane, Batoon, Lena, Hume, David Arthur, Levesque, Jean-Pierre and Pettit, Allison Robyn (2016). Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches. Seminars in Cell and Developmental Biology, 61, 12-21. doi: 10.1016/j.semcdb.2016.08.009

Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches

2014

Journal Article

Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification

Raggatt, Liza J., Wullschleger, Martin E., Alexander, Kylie A., Wu, Andy C. K., Millard, Susan M., Kaur, Simranpreet, Maugham, Michelle L., Gregory, Laura S., Steck, Roland and Pettit, Allison R. (2014). Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. American Journal of Pathology, 184 (12), 3192-3204. doi: 10.1016/j.ajpath.2014.08.017

Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification

2014

Journal Article

Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80+VCAM1+CD169+ER-HR3+Ly6G+ erythroid island macrophages in the mouse

Jacobsen, Rebecca N., Forristal, Catherine E., Raggatt, Liza J., Nowlan, Bianca, Barbier, Valerie, Kaur, Simranpreet, van Rooijen, Nico, Winkler, Ingrid G., Pettit, Allison R. and Levesque, Jean-Pierre (2014). Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80+VCAM1+CD169+ER-HR3+Ly6G+ erythroid island macrophages in the mouse. Experimental Hematology, 42 (7), 547-561. doi: 10.1016/j.exphem.2014.03.009

Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80+VCAM1+CD169+ER-HR3+Ly6G+ erythroid island macrophages in the mouse

2013

Journal Article

Expression profiling in spondyloarthropathy synovial biopsies highlights changes in expression of inflammatory genes in conjunction with tissue remodelling genes

Thomas, Gethin P., Duan, Ran, Pettit, Allison R., Weedon,Helen, Kaur, Simranpreet, Smith, Malcolm and Brown, Matthew A. (2013). Expression profiling in spondyloarthropathy synovial biopsies highlights changes in expression of inflammatory genes in conjunction with tissue remodelling genes. BMC Musculoskeletal Disorders, 14 (1) 354, 354. doi: 10.1186/1471-2474-14-354

Expression profiling in spondyloarthropathy synovial biopsies highlights changes in expression of inflammatory genes in conjunction with tissue remodelling genes

2013

Journal Article

Absence of B cells does Not compromise intramembranous bone formation during healing in a tibial injury model

Raggatt, Liza J., Alexander, Kylie A., Kaur, Simranpreet, Wu, Andy C., MacDonald, Kelli P. A. and Pettit, Allison R. (2013). Absence of B cells does Not compromise intramembranous bone formation during healing in a tibial injury model. American Journal of Pathology, 182 (5), 1501-1508. doi: 10.1016/j.ajpath.2013.01.046

Absence of B cells does Not compromise intramembranous bone formation during healing in a tibial injury model