Elliptic special functions (2014-2016)
Abstract
Although elliptic functions and special functions are both classical areas of mathematics, the field of elliptic special functions was only established in the last two decades. It combines ideas from analysis, modular forms and statistical mechanics to tackle problems in number theory (elliptic curves), algebra (elliptic quantum groups), mathematical physics (Seiberg duality) and more. This proposal aims to settle two important problems in the field of elliptic special functions: the resolution of Boyd's conjectures concerning Mahler measures and L-values of elliptic curves, and the construction of an Askey-Wilson-Koorwinder theory of elliptic biorthogonal functions for the A-type root system.