Skip to menu Skip to content Skip to footer

Geometric evolution problems in nonlinear partial differential equations (2015-2019)

Abstract

This project addresses important problems key to the understanding of geometric evolution equations and certain other nonlinear partial differential equations. The problems to be tackled lie in a very active area of mathematics: harmonic maps, liquid crystals and Yang-Mills theory. Special aims are to exploit new methods, introduced by the CI and his collaborators, to settle open problems in harmonic maps and Yang-Mills equations, and to improve understanding of practical questions such as the mathematical modelling of liquid crystals via the celebrated Ericksen-Leslie and Landau-de Gennes theories. The expected outcomes are fundamental results in mathematics, with applications in other sciences.

Experts

Associate Professor Min-Chun Hong

Associate Professor
School of Mathematics and Physics
Faculty of Science
Min-Chun Hong
Min-Chun Hong