Bio-inspired conducting peptide nanowires for bioelectronic applications (2015-2018)
Abstract
Some bacteria possess a natural conductive tail constructed from proteins (called a nanowire) that has metal-like conductivity. The electrical signals in these nanowires are carried through aromatic groups in the peptides and/or attached cytochromes. This proposal addresses the design and assembly of conducting peptide-based fibrils inspired by these nanowires. We have already shown that peptides can, by design, selfassemble into long thermostable fibrils that support cell growth and development. Our goal is now to create cost-effective, non-toxic, conducting peptide fibrils that can be used in water or physiological environments for bioelectronics applications.