Skip to menu Skip to content Skip to footer

2024

Journal Article

Enhancing the intrinsic antiplasmodial activity and improving the stability and selectivity of a tunable peptide scaffold derived from human platelet factor 4

Lawrence, Nicole, Handley, Thomas N. G., de Veer, Simon J., Harding, Maxim D., Andraszek, Alicja, Hall, Lachlan, Raven, Karoline D., Duffy, Sandra, Avery, Vicky M., Craik, David J., Malins, Lara R. and McMorran, Brendan J. (2024). Enhancing the intrinsic antiplasmodial activity and improving the stability and selectivity of a tunable peptide scaffold derived from human platelet factor 4. ACS Infectious Diseases, 10 (8), 2899-2912. doi: 10.1021/acsinfecdis.4c00276

Enhancing the intrinsic antiplasmodial activity and improving the stability and selectivity of a tunable peptide scaffold derived from human platelet factor 4

2023

Journal Article

Development of antiplasmodial peptide–drug conjugates using a human protein-derived cell-penetrating peptide with selectivity for infected cells

Palombi, Isabella R., Lawrence, Nicole, White, Andrew M., Gare, Caitlin L., Craik, David J., McMorran, Brendan J. and Malins, Lara R. (2023). Development of antiplasmodial peptide–drug conjugates using a human protein-derived cell-penetrating peptide with selectivity for infected cells. Bioconjugate Chemistry, 34 (6), 1105-1113. doi: 10.1021/acs.bioconjchem.3c00147

Development of antiplasmodial peptide–drug conjugates using a human protein-derived cell-penetrating peptide with selectivity for infected cells

2022

Journal Article

Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens

Amiss, Anna S., Henriques, Sónia Troeira and Lawrence, Nicole (2022). Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens. Peptide Science, 114 (2) e24246, 1-12. doi: 10.1002/pep2.24246

Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens

2021

Journal Article

Modified horseshoe crab peptides target and kill bacteria inside host cells

Amiss, Anna S., von Pein, Jessica B., Webb, Jessica R., Condon, Nicholas D., Harvey, Peta J., Phan, Minh-Duy, Schembri, Mark A., Currie, Bart J., Sweet, Matthew J., Craik, David J., Kapetanovic, Ronan, Henriques, Sónia Troeira and Lawrence, Nicole (2021). Modified horseshoe crab peptides target and kill bacteria inside host cells. Cellular and Molecular Life Sciences, 79 (1) 38, 38. doi: 10.1007/s00018-021-04041-z

Modified horseshoe crab peptides target and kill bacteria inside host cells

2020

Journal Article

Cyclic peptide scaffold with ability to stabilize and deliver a helical cell-impermeable cargo across membranes of cultured cancer cells

Lawrence, Nicole, Philippe, Grégoire J.-B., Harvey, Peta J., Condon, Nicholas D., Benfield, Aurélie H., Cheneval, Olivier, Craik, David J. and Troeira Henriques, Sónia (2020). Cyclic peptide scaffold with ability to stabilize and deliver a helical cell-impermeable cargo across membranes of cultured cancer cells. RSC Chemical Biology, 1 (5), 405-420. doi: 10.1039/d0cb00099j

Cyclic peptide scaffold with ability to stabilize and deliver a helical cell-impermeable cargo across membranes of cultured cancer cells

2018

Journal Article

Defense peptides engineered from human platelet factor 4 kill Plasmodium by selective membrane disruption

Lawrence, Nicole, Dennis, Adelaide S. M., Lehane, Adele M., Ehmann, Anna, Harvey, Peta J., Benfield, Aurélie H., Cheneval, Olivier, Henriques, Sónia Troeira, Craik, David J. and McMorran, Brendan J. (2018). Defense peptides engineered from human platelet factor 4 kill Plasmodium by selective membrane disruption. Cell Chemical Biology, 25 (9), 1140-+. doi: 10.1016/j.chembiol.2018.06.009

Defense peptides engineered from human platelet factor 4 kill Plasmodium by selective membrane disruption

2025

Journal Article

Cell-penetrating cyclic and disulfide-rich peptides are privileged molecular scaffolds for intracellular targeting

Troeira Henriques, Sónia, Lawrence, Nicole, Kan, Meng-Wei, Malins, Lara R. and Craik, David J. (2025). Cell-penetrating cyclic and disulfide-rich peptides are privileged molecular scaffolds for intracellular targeting. Biochemistry, 64 (7), 1437-1449. doi: 10.1021/acs.biochem.4c00845

Cell-penetrating cyclic and disulfide-rich peptides are privileged molecular scaffolds for intracellular targeting

2025

Journal Article

Exploring the utility of cell-penetrating peptides as vehicles for the delivery of distinct antimalarial drug cargoes

Gare, Caitlin L., Palombi, Isabella R., White, Andrew M., Chavchich, Marina, Edstein, Michael D., Lock, Aaron, Avery, Vicky M., Craik, David J., McMorran, Brendan J., Lawrence, Nicole and Malins, Lara Rebecca (2025). Exploring the utility of cell-penetrating peptides as vehicles for the delivery of distinct antimalarial drug cargoes. ChemMedChem, 20 (2) e202400637. doi: 10.1002/cmdc.202400637

Exploring the utility of cell-penetrating peptides as vehicles for the delivery of distinct antimalarial drug cargoes

2025

Journal Article

Analogs of cyclic peptide mortiamide‐d from marine fungi have improved membrane permeability and kill drug‐resistant melanoma cells

Bergeron, Catherine, Bérubé, Christopher, Lamb, Henry, Koda, Yasuko, Craik, David J., Henriques, Sónia Troeira, Voyer, Normand and Lawrence, Nicole (2025). Analogs of cyclic peptide mortiamide‐d from marine fungi have improved membrane permeability and kill drug‐resistant melanoma cells. Peptide Science, 117 (1) e24380. doi: 10.1002/pep2.24380

Analogs of cyclic peptide mortiamide‐d from marine fungi have improved membrane permeability and kill drug‐resistant melanoma cells

2025

Journal Article

Synthesis and Investigation of Peptide-Drug Conjugates Comprising Camptothecin and a Human Protein-Derived Cell-Penetrating Peptide

Palombi, Isabella R., White, Andrew M., Koda, Yasuko, Craik, David J., Lawrence, Nicole and Malins, Lara R. (2025). Synthesis and Investigation of Peptide-Drug Conjugates Comprising Camptothecin and a Human Protein-Derived Cell-Penetrating Peptide. Chemical Biology & Drug Design, 105 (1) e70051, 1-10. doi: 10.1111/cbdd.70051

Synthesis and Investigation of Peptide-Drug Conjugates Comprising Camptothecin and a Human Protein-Derived Cell-Penetrating Peptide

2024

Journal Article

Cyclic tachyplesin I kills proliferative, non-proliferative and drug-resistant melanoma cells without inducing resistance

Benfield, Aurélie H., Vernen, Felicitas, Young, Reuben S. E., Nadal-Bufí, Ferran, Lamb, Henry, Hammerlindl, Heinz, Craik, David J., Schaider, Helmut, Lawrence, Nicole, Blanksby, Stephen J. and Henriques, Sónia Troeira (2024). Cyclic tachyplesin I kills proliferative, non-proliferative and drug-resistant melanoma cells without inducing resistance. Pharmacological Research, 207 107298. doi: 10.1016/j.phrs.2024.107298

Cyclic tachyplesin I kills proliferative, non-proliferative and drug-resistant melanoma cells without inducing resistance

2024

Journal Article

Author Correction: Repurposing a plant peptide cyclase for targeted lysine acylation

Rehm, Fabian B. H., Tyler, Tristan J., Zhou, Yan, Huang, Yen-Hua, Wang, Conan K., Lawrence, Nicole, Craik, David J. and Durek, Thomas (2024). Author Correction: Repurposing a plant peptide cyclase for targeted lysine acylation. Nature Chemistry, 16 (9), 1565-1565. doi: 10.1038/s41557-024-01625-7

Author Correction: Repurposing a plant peptide cyclase for targeted lysine acylation

2024

Journal Article

Repurposing a plant peptide cyclase for targeted lysine acylation

Rehm, Fabian B. H., Tyler, Tristan J., Zhou, Yan, Huang, Yen-Hua, Wang, Conan K., Lawrence, Nicole, Craik, David J. and Durek, Thomas (2024). Repurposing a plant peptide cyclase for targeted lysine acylation. Nature Chemistry, 2024 (9), 1-1. doi: 10.1038/s41557-024-01520-1

Repurposing a plant peptide cyclase for targeted lysine acylation

2024

Journal Article

Deciphering the structure and mechanism‐of‐action of computer‐designed mastoparan peptides

Oshiro, Karen G. N., Freitas, Carlos D. P., Rezende, Samilla B., Orozco, Raquel M. Q., Chan, Lai Y., Lawrence, Nicole, Lião, Luciano M., Macedo, Maria L. R., Craik, David J., Cardoso, Marlon H. and Franco, Octávio L. (2024). Deciphering the structure and mechanism‐of‐action of computer‐designed mastoparan peptides. The FEBS Journal, 291 (5), 865-883. doi: 10.1111/febs.17010

Deciphering the structure and mechanism‐of‐action of computer‐designed mastoparan peptides

2023

Journal Article

The circular bacteriocin enterocin NKR-5-3B has an improved stability profile over nisin

Wang, Conan K., Huang, Yen-Hua, Shabbir, Fatima, Pham, Huong T., Lawrence, Nicole, Benfield, Aurélie H., van der Donk, Wilfred, Henriques, Sónia T., Turner, Mark S. and Craik, David J. (2023). The circular bacteriocin enterocin NKR-5-3B has an improved stability profile over nisin. Peptides, 167 171049, 171049. doi: 10.1016/j.peptides.2023.171049

The circular bacteriocin enterocin NKR-5-3B has an improved stability profile over nisin

2021

Journal Article

Antimicrobial and anticancer properties of synthetic peptides derived from the wasp Parachartergus fraternus

Muller, Jessica A. I., Lawrence, Nicole, Chan, Lai Yue, Harvey, Peta J., Elliott, Alysha G., Blaskovich, Mark A. T., Gonçalves, Jacqueline C., Galante, Priscilla, Mortari, Marcia R., Toffoli-Kadri, Mônica C., Koehbach, Johannes and Craik, David (2021). Antimicrobial and anticancer properties of synthetic peptides derived from the wasp Parachartergus fraternus. Chembiochem , 22 (8) cbic.202000716, 1415-1423. doi: 10.1002/cbic.202000716

Antimicrobial and anticancer properties of synthetic peptides derived from the wasp Parachartergus fraternus

2021

Journal Article

Bioactive cyclization optimizes the affinity of a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) peptide inhibitor

Tombling, Benjamin J., Lammi, Carmen, Lawrence, Nicole, Gilding, Edward K., Grazioso, Giovanni, Craik, David J. and Wang, Conan K. (2021). Bioactive cyclization optimizes the affinity of a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) peptide inhibitor. Journal of Medicinal Chemistry, 64 (5) acs.jmedchem.0c01766, 2523-2533. doi: 10.1021/acs.jmedchem.0c01766

Bioactive cyclization optimizes the affinity of a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) peptide inhibitor

2021

Journal Article

Angler peptides: macrocyclic conjugates inhibit p53:MDM2/X interactions and activate apoptosis in cancer cells

Philippe, Grégoire J.-B., Mittermeier, Anna, Lawrence, Nicole, Huang, Yen-Hua, Condon, Nicholas D., Loewer, Alexander, Craik, David J. and Henriques, Sónia T. (2021). Angler peptides: macrocyclic conjugates inhibit p53:MDM2/X interactions and activate apoptosis in cancer cells. ACS Chemical Biology, 16 (2) acschembio.0c00988, 414-428. doi: 10.1021/acschembio.0c00988

Angler peptides: macrocyclic conjugates inhibit p53:MDM2/X interactions and activate apoptosis in cancer cells

2021

Journal Article

Engineered EGF-A peptides with improved affinity for proprotein convertase subtilisin/kexin type 9 (PCSK9)

Tombling, Benjamin J., Lammi, Carmen, Lawrence, Nicole, Li, Jianqiang, Arnoldi, Anna, Craik, David J. and Wang, Conan K. (2021). Engineered EGF-A peptides with improved affinity for proprotein convertase subtilisin/kexin type 9 (PCSK9). ACS Chemical Biology, 16 (2) acschembio.0c00991, 429-439. doi: 10.1021/acschembio.0c00991

Engineered EGF-A peptides with improved affinity for proprotein convertase subtilisin/kexin type 9 (PCSK9)

2021

Journal Article

Functional modulation of the human voltage-gated sodium channel NaV1.8 by auxiliary β subunits

Nevin, S. T., Lawrence, N., Nicke, A., Lewis, R. J. and Adams, D. J. (2021). Functional modulation of the human voltage-gated sodium channel NaV1.8 by auxiliary β subunits. Channels, 15 (1), 79-93. doi: 10.1080/19336950.2020.1860399

Functional modulation of the human voltage-gated sodium channel NaV1.8 by auxiliary β subunits