Skip to menu Skip to content Skip to footer

2021

Conference Publication

Pointwise binary classification with pairwise confidence comparisons

Feng, Lei, Shu, Senlin, Lu, Nan, Han, Bo, Xu, Miao, Niu, Gang, An, Bo and Sugiyama, Masashi (2021). Pointwise binary classification with pairwise confidence comparisons. International Conference on Machine Learning (ICML), Virtual, 18-24 July, 2021. San Diego, CA, United States: JMLR.

Pointwise binary classification with pairwise confidence comparisons

2020

Conference Publication

SIGUA: Forgetting may make learning with noisy labels more robust

Han, Bo, Niu, Gang, Yu, Xingrui, Yao, Quanming, Xu, Miao, Tsang, Ivor W. and Sugiyama, Masashi (2020). SIGUA: Forgetting may make learning with noisy labels more robust. 37th International Conference on Machine Learning, ICML 2020, Virtual, 13-18 July, 2020. San Diego, CA, United States: JMLR.

SIGUA: Forgetting may make learning with noisy labels more robust

2020

Conference Publication

Provably consistent partial-label learning

Feng, Lei, Lv, Jiaqi, Han, Bo, Xu, Miao, Niu, Gang, Geng, Xin, An, Bo and Sugiyama, Masashi (2020). Provably consistent partial-label learning. Conference on Neural Information Processing Systems, Vancouver, Canada, 6-12 December 2020. Maryland Heights, MO, United States: Morgan Kaufmann Publishers.

Provably consistent partial-label learning

2020

Conference Publication

Trading personalization for accuracy: data debugging in collaborative filtering

Chen, Long, Yao, Yuan, Xu, Feng, Xu, Miao and Tong, Hanghang (2020). Trading personalization for accuracy: data debugging in collaborative filtering. Conference on Neural Information Processing Systems, Vancouver, Canada, 6-12 December 2020. Maryland Heights, MO, United States: Morgan Kaufmann Publishers.

Trading personalization for accuracy: data debugging in collaborative filtering

2020

Conference Publication

Progressive identification of true labels for partial-label learning

Lvy, Jiaqi, Xu, Miao, Feng, Lei, Niu, Gang, Geng, Xin and Sugiyama, Masashi (2020). Progressive identification of true labels for partial-label learning. 37th International Conference on Machine Learning (ICML 2020), Vienna, Austria, 12-18 July 2020. International Machine Learning Society.

Progressive identification of true labels for partial-label learning

2019

Conference Publication

Clipped Matrix Completion: A Remedy for Ceiling Effects

Teshima, Takeshi, Xu, Miao, Sato, Issei and Sugiyama, Masashi (2019). Clipped Matrix Completion: A Remedy for Ceiling Effects. Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI United States, 27 January – 1 February 2019. PALO ALTO: Association for the Advancement of Artificial Intelligence (AAAI). doi: 10.1609/aaai.v33i01.33015151

Clipped Matrix Completion: A Remedy for Ceiling Effects

2018

Conference Publication

Co-teaching: Robust training of deep neural networks with extremely noisy labels

Han, Bo, Yao, Quanming, Yu, Xingrui, Niu, Gang, Xu, Miao, Hu, Weihua, Tsang, Ivor W. and Sugiyama, Masashi (2018). Co-teaching: Robust training of deep neural networks with extremely noisy labels. 32nd Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2-8 December, 2018. Maryland Heights, MO, United States: Morgan Kaufmann Publishers. doi: 10.5555/3327757.3327944

Co-teaching: Robust training of deep neural networks with extremely noisy labels

2018

Conference Publication

Active Feature Acquisition with Supervised Matrix Completion

Huang, Sheng-Jun, Xu, Miao, Xie, Ming-Kun, Sugiyama, Masashi, Niu, Gang and Chen, Songcan (2018). Active Feature Acquisition with Supervised Matrix Completion. 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, July 2018. New York, NY United States: ACM. doi: 10.1145/3219819.3220084

Active Feature Acquisition with Supervised Matrix Completion

2017

Conference Publication

Incomplete Label Distribution Learning

Xu, Miao and Zhou, Zhi-Hua (2017). Incomplete Label Distribution Learning. Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, VIC Australia, 19-25 August 2017. Melbourne, VIC Australia: International Joint Conferences on Artificial Intelligence Organization. doi: 10.24963/ijcai.2017/443

Incomplete Label Distribution Learning

2015

Conference Publication

CUR algorithm for partially observed matrices

Xu, Miao, Jin, Rong and Zhou, Zhi-Hua (2015). CUR algorithm for partially observed matrices. 32nd International Conference on Machine Learning, Lille, France, 7-9 July, 2015. San Diego, CA, United States: JMLR.

CUR algorithm for partially observed matrices

2013

Conference Publication

Multi-label learning with PRO LOSS

Xu, Miao, Li, Yu-Feng and Zhou, Zhi-Hua (2013). Multi-label learning with PRO LOSS. AAAI-13: Twenty-Seventh Conference on Artificial Intelligence, Bellevue, WA USA, 14-18 July 2013.

Multi-label learning with PRO LOSS

2013

Conference Publication

Speedup matrix completion with side information: application to multi-label learning

Xu, Miao, Jin, Rong and Zhou, Zhi-Hua (2013). Speedup matrix completion with side information: application to multi-label learning. NIPS'13: Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV USA, 5-10 December 2013. Maryland Heights, MO USA: Morgan Kaufmann Publishers.

Speedup matrix completion with side information: application to multi-label learning