Skip to menu Skip to content Skip to footer

2024

Conference Publication

Embark on DenseQuest: a system for selecting the best dense retriever for a custom collection

Khramtsova, Ekaterina, Leelanupab, Teerapong, Zhuang, Shengyao, Baktashmotlagh, Mahsa and Zuccon, Guido (2024). Embark on DenseQuest: a system for selecting the best dense retriever for a custom collection. SIGIR '24: 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, Washington, DC, United States, 14-18 July 2024. New York, NY, United States: ACM. doi: 10.1145/3626772.3657674

Embark on DenseQuest: a system for selecting the best dense retriever for a custom collection

2023

Conference Publication

Deep neural networks for the qualitative analysis of myocardial perfusion emission computed tomography images

Pruthipanyasakul, Nareekarn, Kanungsukkasem, Nont, Urruty, Thierry and Leelanupab, Teerapong (2023). Deep neural networks for the qualitative analysis of myocardial perfusion emission computed tomography images. 15th International Conference on Information Technology and Electrical Engineering (ICITEE), Chiang Mai, Thailand, 26-27 October 2023. Piscataway, NJ, United States: IEEE. doi: 10.1109/icitee59582.2023.10317700

Deep neural networks for the qualitative analysis of myocardial perfusion emission computed tomography images

2023

Book Chapter

When are Latent Topics Useful for Text Mining? : Enriching Bag-of-Words Representations with Information Extraction in Thai News Articles

Kanungsukkasem, Nont, Chuangkrud, Piyawat, Pitichotchokphokhin, Pimpitcha, Damrongrat, Chaianun and Leelanupab, Teerapong (2023). When are Latent Topics Useful for Text Mining? : Enriching Bag-of-Words Representations with Information Extraction in Thai News Articles. Recent Challenges in Intelligent Information and Database Systems. (pp. 205-219) Cham: Springer Nature Switzerland. doi: 10.1007/978-3-031-42430-4_17

When are Latent Topics Useful for Text Mining? : Enriching Bag-of-Words Representations with Information Extraction in Thai News Articles

2022

Journal Article

A multi-sequences MRI deep framework study applied to glioma classfication

Coupet, Matthieu, Urruty, Thierry, Leelanupab, Teerapong, Naudin, Mathieu, Bourdon, Pascal, Maloigne, Christine Fernandez and Guillevin, Rémy (2022). A multi-sequences MRI deep framework study applied to glioma classfication. Multimedia Tools and Applications, 81 (10), 13563-13591. doi: 10.1007/s11042-022-12316-1

A multi-sequences MRI deep framework study applied to glioma classfication

2019

Journal Article

Financial Latent Dirichlet Allocation (FinLDA): Feature Extraction in Text and Data Mining for Financial Time Series Prediction

Kanungsukkasem, Nont and Leelanupab, Teerapong (2019). Financial Latent Dirichlet Allocation (FinLDA): Feature Extraction in Text and Data Mining for Financial Time Series Prediction. IEEE Access, 7, 71645-71664. doi: 10.1109/access.2019.2919993

Financial Latent Dirichlet Allocation (FinLDA): Feature Extraction in Text and Data Mining for Financial Time Series Prediction

2013

Journal Article

Crowdsourcing interactions: using crowdsourcing for evaluating interactive information retrieval systems

Zuccon, Guido, Leelanupab, Teerapong, Whiting, Stewart, Yilmaz, Emine, Jose, Joemon M. and Azzopardi, Leif (2013). Crowdsourcing interactions: using crowdsourcing for evaluating interactive information retrieval systems. Information Retrieval, 16 (2), 267-305. doi: 10.1007/s10791-012-9206-z

Crowdsourcing interactions: using crowdsourcing for evaluating interactive information retrieval systems

2012

Conference Publication

A comprehensive analysis of parameter settings for novelty-biased cumulative gain

Leelanupab, Teerapong, Zuccon, Guido and M. Jose, Joemon (2012). A comprehensive analysis of parameter settings for novelty-biased cumulative gain. 21st ACM international Conference on Information and Knowledge Management, Maui, HI, United States, 29 October - 02 November 2012. New York, NY, United States: ACM Press. doi: 10.1145/2396761.2398550

A comprehensive analysis of parameter settings for novelty-biased cumulative gain

2011

Conference Publication

A Query-Basis Approach to Parametrizing Novelty-Biased Cumulative Gain

Leelanupab, Teerapong, Zuccon, Guido and Jose, Joemon M. (2011). A Query-Basis Approach to Parametrizing Novelty-Biased Cumulative Gain. 3rd International Conference on the Theory of Information Retrieval (ICTIR 2011), Bertinoro, Italy, 12-14 September 2011. Heidelberg, Germany: Springer. doi: 10.1007/978-3-642-23318-0_32

A Query-Basis Approach to Parametrizing Novelty-Biased Cumulative Gain

2010

Book Chapter

University of Glasgow at ImageCLEFPhoto 2009: Optimising Similarity and Diversity in Image Retrieval

Leelanupab, Teerapong, Zuccon, Guido, Goyal, Anuj, Halvey, Martin, Punitha, P. and Jose, Joemon M. (2010). University of Glasgow at ImageCLEFPhoto 2009: Optimising Similarity and Diversity in Image Retrieval. Lecture Notes in Computer Science. (pp. 133-141) Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-15751-6_14

University of Glasgow at ImageCLEFPhoto 2009: Optimising Similarity and Diversity in Image Retrieval

2010

Book Chapter

Revisiting sub–topic retrieval in the ImageCLEF 2009 photo retrieval task

Leelanupab, Teerapong, Zuccon, Guido and Jose, Joemon M. (2010). Revisiting sub–topic retrieval in the ImageCLEF 2009 photo retrieval task. ImageCLEF. (pp. 277-294) Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-642-15181-1_15

Revisiting sub–topic retrieval in the ImageCLEF 2009 photo retrieval task

2010

Conference Publication

When Two Is Better Than One: A Study of Ranking Paradigms and Their Integrations for Subtopic Retrieval

Leelanupab, Teerapong, Zuccon, Guido and Jose, Joemon M. (2010). When Two Is Better Than One: A Study of Ranking Paradigms and Their Integrations for Subtopic Retrieval. 6th Asia Information Retrieval Societies Conference (AIRS 2010), Taipei, Taiwan, 1-3 December 2010. Heidelberg, Germany: Springer. doi: 10.1007/978-3-642-17187-1_15

When Two Is Better Than One: A Study of Ranking Paradigms and Their Integrations for Subtopic Retrieval