2010 Book Chapter Clustering of high-dimensional and correlated dataMcLachlan, Geoffrey J., Ng, Shu-Kay and Wang, K. (2010). Clustering of high-dimensional and correlated data. Data Analysis and Classification: Proceedings of the 6th Conference of the Classification and Data Analysis Group of the SocietàItaliana di Statistica, Macerata, Italy 12-14 September, 2007. (pp. 3-11) edited by Francesco Palumbo, Carlo Natale Lauro and Michael J. Greenacre. Berlin; Heidelberg, Germany: Springer - Verlag. doi: 10.1007/978-3-642-03739-9_1 |
2010 Book Chapter Use of mixture models in multiple hypothesis testing with applications in bioinformaticsMcLachlan, Geoffrey J. and Wockner, Leesa (2010). Use of mixture models in multiple hypothesis testing with applications in bioinformatics. Classification as a Tool for Research: Proceedings of the 11th IFCS Biennial Conference and 33rd Annual Conference of the Gesellschaft für Klassifikation. (pp. 177-184) edited by Hermann Locarek-Junge and Claus Weihs. Heidelberg, Germany: Springer-Verlag. doi: 10.1007/978-3-642-10745-0 |
2010 Book Chapter Clustering of high-dimensional data via finite mixture modelsMcLachlan, Geoff J. and Baek, Jangsun (2010). Clustering of high-dimensional data via finite mixture models. Advances in Data Analysis, Business Intelligence: Proceedings of the 32nd Annual Conference of the Gesellschaft für Klassifikation e.V., Joint Conference with the British Classification Society (BCS) and the Dutch/Flemish Classification Society (VOC Helmut-Schmidt-University, Hamburg, July 16–18, 2008. (pp. 33-44) edited by Andreas Fink, Berthold Lausen, Wilfried Seidel and Alfred Ultsch. Heidelberg, Germany: Springer-Verlag. doi: 10.1007/978-3-642-01044-6 |
2010 Book Chapter Expert networks with mixed continuous and categorical feature variables: A location modeling approach.Ng, Shu-Kay and McLachlan, Geoffrey J. (2010). Expert networks with mixed continuous and categorical feature variables: A location modeling approach.. Machine learning research progress. (pp. 355-368) edited by Hannah Peters and Mia Vogel. New York, U.S.A.: Nova Science. |
2009 Book Chapter EMMcLachlan, G. J. and Ng, S-K. (2009). EM. The Top Ten Algorithms in Data Mining. (pp. 93-115) edited by Wu, X. and Kumar, V.. Florida, United States: Chapman & Hall/CRC. doi: 10.1201/9781420089653-12 |
2009 Book Chapter Statistical analysis on microarray data: selection of gene prognosis signaturesLe Cao, Kim-Anh and McLachlan, Geoffrey J. (2009). Statistical analysis on microarray data: selection of gene prognosis signatures. Computational biology: issues and applications in oncology. (pp. 55-76) edited by Tuan Pham. New York, United States: Springer. doi: 10.1007/978-1-4419-0811-7_3 |
2009 Book Chapter Clustering methods for gene-expression dataFlack, L. K. and McLachlan, G. J. (2009). Clustering methods for gene-expression data. Handbook of Research on Systems Biology Applications in Medicine. (pp. 209-220) edited by Andriani Daskalaki. United States: IGI Global. doi: 10.4018/978-1-60566-076-9.ch011 |
2009 Book Chapter Model-based clusteringMcLachlan, G. J. (2009). Model-based clustering. Comprehensive chemometrics: chemical and biochemical data analysis. (pp. 655-681) edited by Steven D. Brown, Roma Tauler and Beata Walczak. Oxford, U.K.: Elsevier Science. doi: 10.1016/B978-044452701-1.00068-5 |
2008 Book Chapter ClusteringMcLachlan, G. J., Bean, R. W. and Ng, S.-K. (2008). Clustering. Bioinformatics, volume 2: Structure, function and applications. (pp. 423-439) edited by J. M. Keith. New Jersey, United States: Humana Press. doi: 10.1007/978-1-60327-429-6_22 |
2008 Book Chapter Correcting for Selection Bias via Cross-Validation in the Classification of Microarray DataMcLachlan, G J., Chevelu, J. and Zhu, J. (2008). Correcting for Selection Bias via Cross-Validation in the Classification of Microarray Data. Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen. (pp. 364-376) edited by Balakrishnan, N., Pena, E. A. and Silvapulle, M. J.. United States: Institute of Mathematical Statistics. doi: 10.1214/193940307000000284 |
2008 Book Chapter Clustering of microarray data via mixture modelsMcLachlan, Geoffrey J., Ng, Angus and Bean, Richard W. (2008). Clustering of microarray data via mixture models. Statistical advances in the biomedical sciences: clinical trials, epidemiology, survival analysis, and bioinformatics. (pp. 365-383) edited by Atanu Biswas, Sujay Datta, Jason P. Fine and Mark R. Segal. Hoboken, NJ, United States: John Wiley & Sons. doi: 10.1002/9780470181218.ch21 |
2005 Book Chapter Use of microarray data via model-based classification in the study and prediction of survival from lung cancerJones, L., Ng, S., Ambroise, C, Monico, K. A., Khan, N. and McLachlan, G. J. (2005). Use of microarray data via model-based classification in the study and prediction of survival from lung cancer. Methods of microarray data analysis IV. (pp. 163-173) edited by Jennifer S. Shoemaker and Simon M. Lin. New York, USA: Springer. doi: 10.1007/0-387-23077-7_13 |
2004 Book Chapter The EM algorithmNg, S. K., Krishnan, T. and McLachlan, G. J. (2004). The EM algorithm. Handbook of Computational Statistics: Concepts and Methods. (pp. 137-168) edited by J.E. Gentle, W. Hardle and Y. Mori. Germany: Springer-Verlag. |
2003 Book Chapter On clustering by mixture modelsMcLachlan, G. J., Ng, A.S. K. and Peel, D. (2003). On clustering by mixture models. Exploratory Data Analysis in Empirical Research. (pp. 141-148) edited by M. Schwaiger and O. Opitz. Germany: Springer. doi: 10.1007/978-3-642-55721-7_16 |