2022 Journal Article Phenological optimization of late reproductive phase for raising wheat yield potential in irrigated mega-environmentsHu, Pengcheng, Chapman, Scott C., Sukumaran, Sivakumar, Reynolds, Matthew and Zheng, Bangyou (2022). Phenological optimization of late reproductive phase for raising wheat yield potential in irrigated mega-environments. Journal of Experimental Botany, 73 (12), 4236-4249. doi: 10.1093/jxb/erac144 |
2022 Journal Article Evaluation of drought tolerance of wheat genotypes in rain-fed sodic soil environments using high-resolution UAV remote sensing techniquesDas, Sumanta, Christopher, Jack, Roy Choudhury, Malini, Apan, Armando, Chapman, Scott, Menzies, Neal W. and Dang, Yash P. (2022). Evaluation of drought tolerance of wheat genotypes in rain-fed sodic soil environments using high-resolution UAV remote sensing techniques. Biosystems Engineering, 217, 68-82. doi: 10.1016/j.biosystemseng.2022.03.004 |
2022 Journal Article A wiring diagram to integrate physiological traits of wheat yield potentialReynolds, Matthew Paul, Slafer, Gustavo Ariel, Foulkes, John Michael, Griffiths, Simon, Murchie, Erik Harry, Carmo-Silva, Elizabete, Asseng, Senthold, Chapman, Scott C., Sawkins, Mark, Gwyn, Jeff and Flavell, Richard Bailey (2022). A wiring diagram to integrate physiological traits of wheat yield potential. Nature Food, 3 (5), 318-324. doi: 10.1038/s43016-022-00512-z |
2022 Journal Article Estimating photosynthetic attributes from high-throughput canopy hyperspectral sensing in sorghumZhi, Xiaoyu, Massey-Reed, Sean Reynolds, Wu, Alex, Potgieter, Andries, Borrell, Andrew, Hunt, Colleen, Jordan, David, Zhao, Yan, Chapman, Scott, Hammer, Graeme and George-Jaeggli, Barbara (2022). Estimating photosynthetic attributes from high-throughput canopy hyperspectral sensing in sorghum. Plant Phenomics, 2022 9768502, 1-18. doi: 10.34133/2022/9768502 |
2022 Journal Article Detection of calcium, magnesium, and chlorophyll variations of wheat genotypes on sodic soils using hyperspectral red edge parametersRoy Choudhury, Malini, Christopher, Jack, Das, Sumanta, Apan, Armando, Menzies, Neal W., Chapman, Scott, Mellor, Vincent and Dang, Yash P. (2022). Detection of calcium, magnesium, and chlorophyll variations of wheat genotypes on sodic soils using hyperspectral red edge parameters. Environmental Technology & Innovation, 27 102469, 102469. doi: 10.1016/j.eti.2022.102469 |
2022 Journal Article Quantifying the effects of varietal types × management on the spatial variability of sorghum biomass across US environmentsOjeda, Jonathan J., Hammer, Graeme, Yang, Kai‐Wei, Tuinstra, Mitchell R., deVoil, Peter, McLean, Greg, Huber, Isaiah, Volenec, Jeffrey J., Brouder, Sylvie M., Archontoulis, Sotirios and Chapman, Scott C. (2022). Quantifying the effects of varietal types × management on the spatial variability of sorghum biomass across US environments. GCB Bioenergy, 14 (3), 411-433. doi: 10.1111/gcbb.12919 |
2021 Journal Article Using a gene-based phenology model to identify optimal flowering periods of spring wheat in irrigated mega-environmentsHu, Pengcheng, Chapman, Scott C., Dreisigacker, Susanne, Sukumaran, Sivakumar, Reynolds, Matthew and Zheng, Bangyou (2021). Using a gene-based phenology model to identify optimal flowering periods of spring wheat in irrigated mega-environments. Journal of Experimental Botany, 72 (20), 7203-7218. doi: 10.1093/jxb/erab326 |
2021 Journal Article Detecting sorghum plant and head features from multispectral UAV imageryZhao, Yan, Zheng, Bangyou, Chapman, Scott C., Laws, Kenneth, George-Jaeggli, Barbara, Hammer, Graeme L., Jordan, David R. and Potgieter, Andries B. (2021). Detecting sorghum plant and head features from multispectral UAV imagery. Plant Phenomics, 2021 9874650, 9874650-14. doi: 10.34133/2021/9874650 |
2021 Journal Article Global Wheat Head Detection 2021: an improved dataset for benchmarking wheat head detection methodsDavid, Etienne, Serouart, Mario, Smith, Daniel, Madec, Simon, Velumani, Kaaviya, Liu, Shouyang, Wang, Xu, Pinto, Francisco, Shafiee, Shahameh, Tahir, Izzat S. A., Tsujimoto, Hisashi, Nasuda, Shuhei, Zheng, Bangyou, Kirchgessner, Norbert, Aasen, Helge, Hund, Andreas, Sadhegi-Tehran, Pouria, Nagasawa, Koichi, Ishikawa, Goro, Dandrifosse, Sébastien, Carlier, Alexis, Dumont, Benjamin, Mercatoris, Benoit, Evers, Byron, Kuroki, Ken, Wang, Haozhou, Ishii, Masanori, Badhon, Minhajul A., Pozniak, Curtis ... Guo, Wei (2021). Global Wheat Head Detection 2021: an improved dataset for benchmarking wheat head detection methods. Plant Phenomics, 2021 9846158, 1-9. doi: 10.34133/2021/9846158 |
2021 Journal Article Evaluation of water status of wheat genotypes to aid prediction of yield on sodic soils using UAV-thermal imaging and machine learningDas, Sumanta, Christopher, Jack, Apan, Armando, Choudhury, Malini Roy, Chapman, Scott, Menzies, Neal W. and Dang, Yash P. (2021). Evaluation of water status of wheat genotypes to aid prediction of yield on sodic soils using UAV-thermal imaging and machine learning. Agricultural and Forest Meteorology, 307 108477, 108477. doi: 10.1016/j.agrformet.2021.108477 |
2021 Journal Article Improving biomass and grain yield prediction of wheat genotypes on sodic soil using integrated high-resolution multispectral, hyperspectral, 3D point cloud, and machine learning techniquesRoy Choudhury, Malini, Das, Sumanta, Christopher, Jack, Apan, Armando, Chapman, Scott, Menzies, Neal W. and Dang, Yash P. (2021). Improving biomass and grain yield prediction of wheat genotypes on sodic soil using integrated high-resolution multispectral, hyperspectral, 3D point cloud, and machine learning techniques. Remote Sensing, 13 (17) 3482, 3482. doi: 10.3390/rs13173482 |
2021 Journal Article Improving estimation of in-season crop water use and health of wheat genotypes on sodic soils using spatial interpolation techniques and multi-component metricsChoudhury, Malini Roy, Mellor, Vincent, Das, Sumanta, Christopher, Jack, Apan, Armando, Menzies, Neal W., Chapman, Scott and Dang, Yash P. (2021). Improving estimation of in-season crop water use and health of wheat genotypes on sodic soils using spatial interpolation techniques and multi-component metrics. Agricultural Water Management, 255 107007, 1-16. doi: 10.1016/j.agwat.2021.107007 |
2021 Journal Article UAV-thermal imaging: a technological breakthrough for monitoring and quantifying crop abiotic stress to help sustain productivity on sodic soils – a case review on wheatDas, Sumanta, Chapman, Scott, Christopher, Jack, Roy Choudhury, Malini, Menzies, Neal W., Apan, Armando and Dang, Yash P. (2021). UAV-thermal imaging: a technological breakthrough for monitoring and quantifying crop abiotic stress to help sustain productivity on sodic soils – a case review on wheat. Remote Sensing Applications: Society and Environment, 23 100583, 1-13. doi: 10.1016/j.rsase.2021.100583 |
2021 Journal Article Comparison of modelling strategies to estimate phenotypic values from an unmanned aerial vehicle with spectral and temporal vegetation indexesHu, Pengcheng, Chapman, Scott C., Jin, Huidong, Guo, Yan and Zheng, Bangyou (2021). Comparison of modelling strategies to estimate phenotypic values from an unmanned aerial vehicle with spectral and temporal vegetation indexes. Remote Sensing, 13 (14) 2827, 1-19. doi: 10.3390/rs13142827 |
2021 Journal Article Genotype specific P-spline response surfaces assist interpretation of regional wheat adaptation to climate changeBustos-Korts, Daniela, Boer, Martin P., Chenu, Karine, Zheng, Bangyou, Chapman, Scott and van Eeuwijk, Fred (2021). Genotype specific P-spline response surfaces assist interpretation of regional wheat adaptation to climate change. In Silico Plants, 3 (2) diab018. doi: 10.1093/insilicoplants/diab018 |
2021 Journal Article Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of cropsHu, Pengcheng, Chapman, Scott C. and Zheng, Bangyou (2021). Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops. Functional Plant Biology, 48 (8), 766-779. doi: 10.1071/FP20309 |
2021 Journal Article Scaling up high-throughput phenotyping for abiotic stress selection in the fieldSmith, Daniel T., Potgieter, Andries B. and Chapman, Scott C. (2021). Scaling up high-throughput phenotyping for abiotic stress selection in the field. Theoretical and Applied Genetics, 134 (6), 1845-1866. doi: 10.1007/s00122-021-03864-5 |
2021 Journal Article Evolution and application of digital technologies to predict crop type and crop phenology in agriculturePotgieter, A. B., Zhao, Yan, Zarco-Tejada, Pablo J, Chenu, Karine, Zhang, Yifan, Porker, Kenton, Biddulph, Ben, Dang, Yash P., Neale, Tim, Roosta, Fred and Chapman, Scott (2021). Evolution and application of digital technologies to predict crop type and crop phenology in agriculture. In Silico Plants, 3 (1) diab017, 1-23. doi: 10.1093/insilicoplants/diab017 |
2021 Journal Article An analysis of simulated yield data for pepper shows how genotype × environment interaction in yield can be understood in terms of yield components and their QTLsRodrigues, Paulo C., Heuvelink, Ep, Marcelis, Leo F. M., Chapman, Scott C. and van Eeuwijk, Fred A. (2021). An analysis of simulated yield data for pepper shows how genotype × environment interaction in yield can be understood in terms of yield components and their QTLs. Crop Science, 61 (3), 1826-1842. doi: 10.1002/csc2.20476 |
2021 Journal Article UAV-Thermal imaging and agglomerative hierarchical clustering techniques to evaluate and rank physiological performance of wheat genotypes on sodic soilDas, Sumanta, Christopher, Jack, Apan, Armando, Roy Choudhury, Malini, Chapman, Scott, Menzies, Neal W. and Dang, Yash P. (2021). UAV-Thermal imaging and agglomerative hierarchical clustering techniques to evaluate and rank physiological performance of wheat genotypes on sodic soil. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 221-237. doi: 10.1016/j.isprsjprs.2021.01.014 |