Elucidating the morphology of organic semiconductors at an atomic level (2020-2022)
Abstract
Controlling morphology and self-organization at a molecular level is key to advancing the performance of optoelectronic devices such as organic light-emitting diodes and organic photovoltaic cells. Current device development relies on a costly and inefficient empirical design cycle (material synthesis followed by device fabrication and testing). In addition, the active layers often involve multiple components and their nano-scale morphology is difficult to probe experimentally. Recently developed molecular simulation techniques can provide unique insight into atomic-level structural details that determine device efficiency. The project will determine if such simulations are sufficiently accurate to be industrially useful.