Fyn-STEP-Tau axis: the nanoscale mechanisms of synaptic plasticity (2024-2027)
Abstract
This project investigates how brain cells use their molecular machinery to communicate with one another. At the heart of this process lies the synapses, the contact points that connect brain cells. This project will employ an innovative combination of quantitative microscopy techniques, gene knockout mouse models, and advanced computational and mathematical analyses to generate new knowledge on how a crucial set of proteins organises in space and time to regulate synaptic connectivity. This will provide significant benefits, including molecular-level insight into the inner workings of the brain and interdisciplinary training for students. The expected outcomes include a deeper understanding of brain functions, such as learning and memory.