Skip to menu Skip to content Skip to footer

2018

Journal Article

A globally convergent algorithm for a lasso-penalized mixture of linear regression models

Lloyd-Jones, Luke R., Nguyen, Hien D. and McLachlan, Geoffrey J. (2018). A globally convergent algorithm for a lasso-penalized mixture of linear regression models. Computational Statistics and Data Analysis, 119, 19-38. doi: 10.1016/j.csda.2017.09.003

A globally convergent algorithm for a lasso-penalized mixture of linear regression models

2018

Journal Article

Chunked-and-averaged estimators for vector parameters

Nguyen, Hien D. and McLachlan, Geoffrey J. (2018). Chunked-and-averaged estimators for vector parameters. Statistics and Probability Letters, 137, 336-342. doi: 10.1016/j.spl.2018.02.051

Chunked-and-averaged estimators for vector parameters

2018

Journal Article

EMMIXcskew: an R package for the fitting of a mixture of canonical fundamental skew t-distributions

Lee, Sharon X. and McLachlan, Geoffrey J. (2018). EMMIXcskew: an R package for the fitting of a mixture of canonical fundamental skew t-distributions. Journal of Statistical Software, 83 (3). doi: 10.18637/jss.v083.i03

EMMIXcskew: an R package for the fitting of a mixture of canonical fundamental skew t-distributions

2017

Journal Article

Whole-volume clustering of time series data from zebrafish brain calcium images via mixture modeling

Nguyen, Hien D., Ullmann, Jeremy F. P., Mclachlan, Geoffrey J., Voleti, Venkatakaushik, Li, Wenze, Hillman, Elizabeth M. C., Reutens, David C. and Janke, Andrew L. (2017). Whole-volume clustering of time series data from zebrafish brain calcium images via mixture modeling. Statistical Analysis and Data Mining, 11 (1), 5-16. doi: 10.1002/sam.11366

Whole-volume clustering of time series data from zebrafish brain calcium images via mixture modeling

2017

Journal Article

Deep Gaussian mixture models

Viroli, Cinzia and McLachlan, Geoffrey J. (2017). Deep Gaussian mixture models. Statistics and Computing, 29 (1), 1-9. doi: 10.1007/s11222-017-9793-z

Deep Gaussian mixture models

2017

Journal Article

Some theoretical results regarding the polygonal distribution

Nguyen, Hien D. and McLachlan, Geoffrey J. (2017). Some theoretical results regarding the polygonal distribution. Communications in Statistics: Theory and Methods, 47 (20), 5083-5095. doi: 10.1080/03610926.2017.1386312

Some theoretical results regarding the polygonal distribution

2017

Journal Article

Finite mixture models in biostatistics

Lee, Sharon X., Ng, Shu-Kay and McLachlan, Geoffrey J. (2017). Finite mixture models in biostatistics. Handbook of Statistics, 36, 75-102.

Finite mixture models in biostatistics

2017

Journal Article

Robust mixtures of factor analysis models using the restricted multivariate skew-t distribution

Lin, Tsung-I, Wang, Wan-Lun, McLachlan, Geoffrey J. and Lee, Sharon X. (2017). Robust mixtures of factor analysis models using the restricted multivariate skew-t distribution. Statistical Modelling, 18 (1), 50-72. doi: 10.1177/1471082X17718119

Robust mixtures of factor analysis models using the restricted multivariate skew-t distribution

2017

Journal Article

Maximum pseudolikelihood estimation for model-based clustering of time series data

Nguyen, Hien D., McLachlan, Geoffrey J., Orban, Pierre, Bellec, Pierre and Janke, Andrew L. (2017). Maximum pseudolikelihood estimation for model-based clustering of time series data. Neural Computation, 29 (4), 990-1020. doi: 10.1162/NECO_a_00938

Maximum pseudolikelihood estimation for model-based clustering of time series data

2016

Journal Article

A universal approximation theorem for mixture-of-experts models

Nguyen, Hien D., Lloyd-Jones, Luke R. and McLachlan, Geoffrey J. (2016). A universal approximation theorem for mixture-of-experts models. Neural Computation, 28 (12), 2585-2593. doi: 10.1162/NECO_a_00892

A universal approximation theorem for mixture-of-experts models

2016

Journal Article

Mixture of time-dependent growth models with an application to blue swimmer crab length-frequency data

Lloyd-Jones, Luke R., Nguyen, Hien D., Mclachlan, Geoffrey J., Sumpton, Wayne and Wang, You-Gan (2016). Mixture of time-dependent growth models with an application to blue swimmer crab length-frequency data. Biometrics, 72 (4), 1255-1265. doi: 10.1111/biom.12531

Mixture of time-dependent growth models with an application to blue swimmer crab length-frequency data

2016

Journal Article

Partial identification in the statistical matching problem

Ahfock, Daniel, Pyne, Saumyadipta, Lee, Sharon X. and McLachlan, Geoffrey J. (2016). Partial identification in the statistical matching problem. Computational Statistics and Data Analysis, 104, 79-90. doi: 10.1016/j.csda.2016.06.005

Partial identification in the statistical matching problem

2016

Journal Article

Progress on a conjecture regarding the triangular distribution

Nguyen, Hien D. and McLachlan, Geoffrey J. (2016). Progress on a conjecture regarding the triangular distribution. Communications in Statistics: Theory and Methods, 46 (22), 11261-11271. doi: 10.1080/03610926.2016.1263742

Progress on a conjecture regarding the triangular distribution

2016

Journal Article

Spatial clustering of time series via mixture of autoregressions models and Markov random fields

Nguyen, Hien D., McLachlan, Geoffrey J., Ullmann, Jeremy F. P. and Janke, Andrew L. (2016). Spatial clustering of time series via mixture of autoregressions models and Markov random fields. Statistica Neerlandica, 70 (4), 414-439. doi: 10.1111/stan.12093

Spatial clustering of time series via mixture of autoregressions models and Markov random fields

2016

Journal Article

Linear mixed models with marginally symmetric nonparametric random effects

Nguyen, Hien D. and McLachlan, Geoffrey J. (2016). Linear mixed models with marginally symmetric nonparametric random effects. Computational Statistics and Data Analysis, 103, 151-169. doi: 10.1016/j.csda.2016.05.005

Linear mixed models with marginally symmetric nonparametric random effects

2016

Journal Article

Maximum likelihood estimation of triangular and polygonal distributions

Nguyen, Hien D. and McLachlan, Geoffrey J. (2016). Maximum likelihood estimation of triangular and polygonal distributions. Computational Statistics and Data Analysis, 102, 23-36. doi: 10.1016/j.csda.2016.04.003

Maximum likelihood estimation of triangular and polygonal distributions

2016

Journal Article

Comment on "On nomenclature for, and the relative merits of, two formulations of skew distributions," by A. Azzalini, R. Browne, M. Genton, and P. McNicholas

McLachlan, Geoffrey J. and Lee, Sharon X. (2016). Comment on "On nomenclature for, and the relative merits of, two formulations of skew distributions," by A. Azzalini, R. Browne, M. Genton, and P. McNicholas. Statistics & Probability Letters, 116, 1-5. doi: 10.1016/j.spl.2016.04.004

Comment on "On nomenclature for, and the relative merits of, two formulations of skew distributions," by A. Azzalini, R. Browne, M. Genton, and P. McNicholas

2016

Journal Article

A block minorization-maximization algorithm for heteroscedastic regression

Nguyen, Hien D., Lloyd-Jones, Luke R. and McLachlan, Geoffrey J. (2016). A block minorization-maximization algorithm for heteroscedastic regression. IEEE Signal Processing Letters, 23 (8) 7501879, 1131-1135. doi: 10.1109/LSP.2016.2586180

A block minorization-maximization algorithm for heteroscedastic regression

2016

Journal Article

Finite mixtures of canonical fundamental skew t-distributions: The unification of the restricted and unrestricted skew t-mixture models

Lee, Sharon X and McLachlan, Geoffrey J (2016). Finite mixtures of canonical fundamental skew t-distributions: The unification of the restricted and unrestricted skew t-mixture models. Statistics and Computing, 26 (3), 573-589. doi: 10.1007/s11222-015-9545-x

Finite mixtures of canonical fundamental skew t-distributions: The unification of the restricted and unrestricted skew t-mixture models

2016

Journal Article

Laplace mixture autoregressive models

Nguyen, Hien D., McLachlan, Geoffrey J., Ullmann, Jeremy F. P. and Janke, Andrew L. (2016). Laplace mixture autoregressive models. Statistics and Probability Letters, 110, 18-24. doi: 10.1016/j.spl.2015.11.006

Laplace mixture autoregressive models