Skip to menu Skip to content Skip to footer

2016

Journal Article

Mixtures of spatial spline regressions for clustering and classification

Nguyen, Hien D., McLachlan, Geoffrey J. and Wood, Ian A. (2016). Mixtures of spatial spline regressions for clustering and classification. Computational Statistics and Data Analysis, 93, 76-85. doi: 10.1016/j.csda.2014.01.011

Mixtures of spatial spline regressions for clustering and classification

2016

Journal Article

Laplace mixture of linear experts

Nguyen, Hien D. and McLachlan, Geoffrey J. (2016). Laplace mixture of linear experts. Computational Statistics and Data Analysis, 93, 177-191. doi: 10.1016/j.csda.2014.10.016

Laplace mixture of linear experts

2016

Journal Article

A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes

Aghaeepour, Nima, Chattopadhyay, Pratip, Chikina, Maria, Dhaene, Tom, Van Gassen, Sofie, Kursa, Miron, Lambrecht, Bart N., Malek, Mehrnoush, McLachlan, G. J., Qian, Yu, Qiu, Peng, Saeys, Yvan, Stanton, Rick, Tong, Dong, Vens, Celine, Walkowiak, Slawomir, Wang, Kui, Finak, Greg, Gottardo, Raphael, Mosmann, Tim, Nolan, Garry P., Scheuermann, Richard H. and Brinkman, Ryan R. (2016). A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry Part A, 89 (1), 16-21. doi: 10.1002/cyto.a.22732

A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes

2016

Journal Article

Extending mixtures of factor models using the restricted multivariate skew-normal distribution

Lin, Tsung-I, McLachlan, Geoffrey J. and Lee, Sharon X. (2016). Extending mixtures of factor models using the restricted multivariate skew-normal distribution. Journal of Multivariate Analysis, 143, 398-413. doi: 10.1016/j.jmva.2015.09.025

Extending mixtures of factor models using the restricted multivariate skew-normal distribution

2016

Journal Article

Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure

Lee, Sharon X., McLachlan, Geoffrey J. and Pyne, Saumyadipta (2016). Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure. Cytometry Part A, 89 (1), 30-43. doi: 10.1002/cyto.a.22789

Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure

2015

Journal Article

Application of multiple imputation for missing values in three-way three-mode multi-environment trial data

Tian, Ting, McLachlan, Geoffrey J., Dieter, Mark J. and Basford, Kaye E. (2015). Application of multiple imputation for missing values in three-way three-mode multi-environment trial data. PLoS One, 10 (12) e0144370, e0144370.1-e0144370.25. doi: 10.1371/journal.pone.0144370

Application of multiple imputation for missing values in three-way three-mode multi-environment trial data

2015

Journal Article

Special issue on "New trends on model-based clustering and classification"

Ingrassia, Salvatore, McLachlan, Geoffrey J. and Govaert, Gerard (2015). Special issue on "New trends on model-based clustering and classification". Advances in Data Analysis and Classification, 9 (4), 367-369. doi: 10.1007/s11634-015-0224-8

Special issue on "New trends on model-based clustering and classification"

2015

Journal Article

Maximum likelihood estimation of Gaussian mixture models without matrix operations

Nguyen, Hien D. and McLachlan, Geoffrey J. (2015). Maximum likelihood estimation of Gaussian mixture models without matrix operations. Advances in Data Analysis and Classification, 9 (4), 371-394. doi: 10.1007/s11634-015-0209-7

Maximum likelihood estimation of Gaussian mixture models without matrix operations

2015

Journal Article

Nature and man: the goal of bio-security in the course of rapid and inevitable human development

Pyne, Saumyadipta, Lee, Sharon X. and McLachlan, Geoffrey J. (2015). Nature and man: the goal of bio-security in the course of rapid and inevitable human development. Journal of the Indian Society of Agricultural Statistics, 69 (2), 117-125.

Nature and man: the goal of bio-security in the course of rapid and inevitable human development

2015

Journal Article

Inference on differences between classes using cluster-specific contrasts of mixed effects

Ng, Shu Kay, McLachlan, Geoffrey J., Wang, Kui, Nagymanyoki, Zoltan, Liu, Shubai and Ng, Shu-Wing (2015). Inference on differences between classes using cluster-specific contrasts of mixed effects. Biostatistics, 16 (1), 98-112. doi: 10.1093/biostatistics/kxu028

Inference on differences between classes using cluster-specific contrasts of mixed effects

2014

Journal Article

A robust factor analysis model using the restricted skew-t distribution

Lin, Tsung-I, Wu, Pal H., McLachlan, Geoffrey J. and Lee, Sharon X. (2014). A robust factor analysis model using the restricted skew-t distribution. Test, 24 (3), 510-531. doi: 10.1007/s11749-014-0422-2

A robust factor analysis model using the restricted skew-t distribution

2014

Journal Article

On the number of components in a Gaussian mixture model

McLachlan, Geoffrey J. and Rathnayake, Suren (2014). On the number of components in a Gaussian mixture model. Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery, 4 (5), 341-355. doi: 10.1002/widm.1135

On the number of components in a Gaussian mixture model

2014

Journal Article

Joint modeling and registration of cell populations in cohorts of high-dimensional flow cytometric data

Pyne, Saumyadipta, Lee, Sharon X., Wang, Kui, Irish, Jonathan, Tamayo, Pablo, Nazaire, Marc-Danie, Duong, Tarn, Ng, Shu-Kay, Hafler, David, Levy, Ronald, Nolan, Garry P., Mesirov, Jill and McLachlan, Geoffrey J. (2014). Joint modeling and registration of cell populations in cohorts of high-dimensional flow cytometric data. PLoS One, 9 (7) e100334, e100334.1-e100334.11. doi: 10.1371/journal.pone.0100334

Joint modeling and registration of cell populations in cohorts of high-dimensional flow cytometric data

2014

Journal Article

False discovery rate control in magnetic resonance imaging studies via Markov random fields

Nguyen, Hien D., McLachlan, Geoffrey J., Cherbuin, Nicolas and Janke, Andrew L. (2014). False discovery rate control in magnetic resonance imaging studies via Markov random fields. IEEE Transactions on Medical Imaging, 33 (8) 6811158, 1735-1748. doi: 10.1109/TMI.2014.2322369

False discovery rate control in magnetic resonance imaging studies via Markov random fields

2014

Journal Article

Mixture models for clustering multilevel growth trajectories

Ng S.K. and McLachlan G.J. (2014). Mixture models for clustering multilevel growth trajectories. Computational Statistics and Data Analysis, 71, 43-51. doi: 10.1016/j.csda.2012.12.007

Mixture models for clustering multilevel growth trajectories

2014

Journal Article

Finite mixtures of multivariate skew t-distributions: Some recent and new results

Lee, Sharon and McLachlan, Geoffrey J. (2014). Finite mixtures of multivariate skew t-distributions: Some recent and new results. Statistics and Computing, 24 (2), 181-202. doi: 10.1007/s11222-012-9362-4

Finite mixtures of multivariate skew t-distributions: Some recent and new results

2014

Journal Article

The 2nd special issue on advances in mixture models

Boehning, Dankmar, Hennig, Christian, McLachlan, Geoffrey J. and McNicholas, Paul D. (2014). The 2nd special issue on advances in mixture models. Computational Statistics and Data Analysis, 71, 1-2. doi: 10.1016/j.csda.2013.10.010

The 2nd special issue on advances in mixture models

2013

Journal Article

EMMIXuskew: An R package for Fitting Mixtures of Multivariate Skew t distributions via the EM algorithm

Lee S.X. and McLachlan G.J. (2013). EMMIXuskew: An R package for Fitting Mixtures of Multivariate Skew t distributions via the EM algorithm. Journal of Statistical Software, 55 (12), 1-22. doi: 10.18637/jss.v055.i12

EMMIXuskew: An R package for Fitting Mixtures of Multivariate Skew t distributions via the EM algorithm

2013

Journal Article

Rejoinder to the discussion of "Model-based clustering and classification with non-normal mixture distributions"

Lee, Sharon X. and McLachlan, Geoffrey J. (2013). Rejoinder to the discussion of "Model-based clustering and classification with non-normal mixture distributions". Statistical Methods and Applications, 22 (4), 473-479. doi: 10.1007/s10260-013-0249-0

Rejoinder to the discussion of "Model-based clustering and classification with non-normal mixture distributions"

2013

Journal Article

Model-based clustering and classification with non-normal mixture distributions

Lee, Sharon X. and McLachlan, Geoffrey J. (2013). Model-based clustering and classification with non-normal mixture distributions. Statistical Methods and Applications, 22 (4), 427-454. doi: 10.1007/s10260-013-0237-4

Model-based clustering and classification with non-normal mixture distributions