
Overview
Background
Prof. Hongzhi Yin works as an ARC Future Fellow and Professor and director of the Responsible Big Data Intelligence Lab (RBDI) at The University of Queensland, Australia. He has made notable contributions to predictive analytics, recommendation systems, graph learning, social media analytics, and decentralized and edge intelligence. He has received numerous awards and recognition for his research achievements. He has been named to IEEE Computer Society’s AI’s 10 to Watch 2022 and Field Leader of Data Mining & Analysis in The Australian's Research 2020 magazine. In addition, he has received the prestigious 2023 Young Tall Poppy Science Awards, Australian Research Council Future Fellowship 2021, the Discovery Early Career Researcher Award 2016, UQ Foundation Research Excellence Award 2019, Rising Star of Science Award (2022-2024) and 2024 Computer Science in Australia Leader Award, AI 2000 Most Influential Scholar Honorable Mention in Data Mining (2022-2024). His research has won 8 international and national Best Paper Awards, including Best Student Full Paper Award at CIKM 2024, Best Paper Award - Honorable Mention at WSDM 2023, Best Paper Award at ICDE 2019, Best Student Paper Award at DASFAA 2020, Best Paper Award Nomination at ICDM 2018, ACM Computing Reviews' 21 Annual Best of Computing Notable Books and Articles, Best Paper Award at ADC 2018 and 2016. His Ph.D. thesis won Peking University Outstanding Ph.D. Dissertation Award 2014 and CCF Outstanding Ph.D. Dissertation Award (Nomination) 2014. He has ten conference papers recognized as the Most Influential Papers in Paper Digest, including KDD 2021 and 2013, AAAI 2021, SIGIR 2022, WWW 2023 and 2021, CIKM 2021, 2019, 2016, and 2015. He has published over 300 papers with an H-index of 83 (20000+ citations), including 250+ CCF A/CORE A* and 80+ CCF B/CORE A, such as KDD, SIGIR, WWW, ACL, WSDM, SIGMOD, VLDB, ICDE, NeurIPS, AAAI, IJCAI, ACM Multimedia, ECCV, IEEE TKDE, TNNL, VLDB Journal, and ACM TOIS. He has been the leading author (first/co-first author or corresponding author) for 250+. He has been an SPC/PC member for many top conferences, such as AAAI, IJCAI, KDD, ICML, ICLR, NeurIPS, SIGIR, WWW, WSDM, VLDB, ICDE, ICDM, and CIKM. He has been serving as Associate Editor/Guest Editor/Editorial Board for Neural Networks (JCR Q1, CCF B, 中科院一区), Science China Information Sciences (JCR Q1, CCF A, 中科院一区), Data Science and Engineering (JCR Q1, 中科院一区), Journal of Computer Science and Technology (JCST, CCF B), Journal of Social Computing, ACM Transactions on Information Systems 2022-2023 (JCR Q1, CCF A, CORE A, 中科院一区), ACM Transactions on Intelligent Systems and Technology 2020-2021 (JCR Q1), Information Systems 2020-2021 (CORE A*), and World Wide Web 2020-2021 and 2017-2018 (CORE A, CCF B). Dr. Yin has also been attracting wide media coverage, such as The Australian, SBS Radio Interviews, UQ News, Sohu.com, Faculty News of EAIT, IEEE Computer Society, ACM Computing Reviews.
I am now looking for highly motivated Ph.D. students. The University of Queensland ranks in the top 50 as measured by the Performance Ranking of Scientific Papers for World Universities. The University also ranks 40 in the QS World University Rankings and 41 in the US News Best Global Universities Rankings. The University of Queensland is the best in Australia according to the Australian Financial Review (AFR), which has now ranked UQ in the #1 position for 2 consecutive years. Please find the following two PhD scholarships.
Latest News
-
[4 April 2025] We have four full research papers accepted by the top conference SIGIR 2025 (CORE A*, CCF A).
-
ID-Free Not Risk-Free: LLM-Powered Agents Unveil Risks in ID-Free Recommender Systems
-
Diversity-aware Dual-promotion Poisoning Attack on Sequential Recommendation
-
Towards Distribution Matching between Collaborative and Language Spaces for Generative Recommendation
-
STAR-Rec: Making Peace with Length Variance and Pattern Diversity in Sequential Recommendation
-
-
[2 April 2025] Congratulations to the three new doctors, Dr. Wei Yuan, Dr. Jing Long and Dr. Yuting Sun, who were awarded their PhD by The University of Queensland.
-
[10 March 2025] Our survey paper "A Survey on Point-of-Interest Recommendation: Models, Architectures, and Security " has been accepted by TKDE 2025 (CORE A*, CCF A).
-
[21 Feb 2025] Our joint foundation work "On the Trustworthiness of Generative Foundation Models– Guideline, Assessment, and Perspective" has been released on both arXiv and Hugging Face. This research is the result of a broad collaboration with leading universities and research institutions worldwide, including the University of Notre Dame, Massachusetts Institute of Technology, University of Waterloo, Carnegie Mellon University, University of Illinois Urbana-Champaign, Stanford University, University of California, Santa Barbara, IBM Research, Microsoft Research, The University of Queensland and more.
-
[20 Feb 2025] I have been recognized as a Highly Ranked Scholar - Prior 5 Years (top 0.05% of all scholars) and #15 in Data Mining on ScholarGPS.
-
[26 January 2025] Our survey paper "Graph Condensation: A Survey" has been accepted by TKDE 2025 (CORE A*, CCF A).
-
[20 January 2025] We have three full research papers and one demo paper accepted by the top conference WWW 2025 (CORE A*, CCF A).
-
Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition
-
BiasNavi: LLM-Empowered Data Bias Management
-
-
[18 January 2025] We have two research papers accepted by AAAI 2025 (CCF A, CORE A*) for Oral Presentation.
-
[5 December 2024] Our tutorial "Graph Condensation: Foundations, Methods and Prospects" has been accepted for presentation at The Web Conference 2025.
-
[30 November 2024] I have been invited to serve as SPC for IJCAI 2025 and DASFAA 2025.
-
[29 November 2024] I was honored with The Faculty Higher Degree Research Supervision Excellence Award.
-
[19 November 2024] Congratulations to Dr. Liang Qu on being awarded his PhD degree by The University of Queensland.
-
[17 November 2024] Our research paper "Progressive Generalization Risk Reduction for Data-Efficient Causal Effect Estimation" was accepted by the top conference KDD 2025 (CCF A, CORE A*). Congratulations to Hechuan.
-
[24 October 2024] Our research paper "Physics-guided Active Sample Reweighting for Urban Flow Prediction" won the Best Student Full Paper Award at the top conference CIKM 2024. Congratulations to Wei!
-
[18 October 2024] We have published two survey papers in top-tier journals: ACM Computing Surveys and Science China Information Sciences. Additionally, we have recently released two new survey papers on arXiv.
-
[17 October 2024] We have two research papers "PUMA: Efficient Continual Graph Learning with Graph Condensation" and "Handling Low Homophily in Recommender Systems with Partitioned Graph Transformer" accepted by the top journal TKDE.
- [26 September 2024] We have one research paper "Distribution-Aware Data Expansion with Diffusion Models" accepted by NeurIPS 2024 (CCF A, CORE A*).
-
[23 September 2024] We have three journal papers recognized as ESI Hot and Highly Cited papers.
-
[10 September 2024] I have been recognized with the 2024 Rising Star of Science Award in Research.com and ranked #8 in Australia among Rising Stars for 2024.
-
[24 August 2024] Two of my PhD graduates have been awarded the competitive ARC DECRA Fellowship. Congratulations to Weiqing and Junliang.
-
[23 July 2024] Recently, we have released 3 comprehensive survey papers.
-
[2 July 2024] I have been invited to serve as area chair at KDD 2025.
-
[27 June 2024] Our ARC Linkage Project "Building an Aussie Information Recommendation System You Can Trust" has been granted and funded.
-
[16 June 2024] I have been invited to co-chair the User modeling, personalization and recommendation track at The Web Conference 2025.
-
[6 June 2024] Recently, we have released 2 comprehensive survey papers.
-
[23 May 2024] Our project Personalized On-Device Large Language Models was shortlisted as a finalist for the 2024 iAwards.
-
[22 May 2024] Our research paper "Adversarial Item Promotion on Visually-Aware Recommender Systems by Guided Diffusion" has been accepted by the top journal TOIS 2024 (CORE A and CCF A).
-
[17 May 2024] We have 4 full research research papers accepted by the prestigious conference KDD 2024 (CORE A*, CCF A).
Availability
- Professor Hongzhi Yin is:
- Available for supervision
Qualifications
- Postgraduate Diploma, Peking University
- Doctor of Philosophy, Peking University
Research interests
-
Recommender System and User Modeling
-
Graph Mining and Embedding
-
Decentralized and Federated Learning
-
Edge Machine Learning and Applications
-
Trustworthy Machine Learning and Applications
-
QA, Chatbot and Information Retrieval
-
Time Series and Sequence Mining and Prediction
-
Spatiotemporal Data Mining
-
Smart Healthcare
Research impacts
Prof. Yin is currently directing the Responsible Big Data Intelligence Lab (RBDI). RBDI Lab aims and strives to develop decentralized, on-device, and trustworthy (e.g., privacy-preserving, robust, explainable and fair) data mining and machine learning techniques with theoretical backbones to better discover actionable patterns and intelligence from large-scale, heterogeneous, networked, dynamic and sparse data. RBDI joins forces with other fields such as urban transportation, healthcare, agriculture, E-commerce and marketing to help solve societal, environmental and economic challenges facing humanity in pursuit of a sustainable future. His research has also attracted media coverage, such as The Australian, SBS, UQ News, Faculty News of EAIT, ACM Computing Reviews, 360 News.
Works
Search Professor Hongzhi Yin’s works on UQ eSpace
2017
Conference Publication
Recommendation in context-rich environment: An information network analysis approach
Sun, Yizhou, Yin, Hongzhi and Ren, Xiang (2017). Recommendation in context-rich environment: An information network analysis approach. 26th International World Wide Web Conference, WWW 2017 Companion, Perth, WA, Australia, April 3 - 7, 2017. Geneva, Switzerland: International World Wide Web Conferences Steering Committee. doi: 10.1145/3041021.3051105
2017
Conference Publication
Mobi-SAGE: A sparse additive generative model for mobile app recommendation
Yin, Hongzhi, Chen, Liang, Wang, Weiqing, Du, Xingzhong, Nguyen, Quoc Viet Hung and Zhou, Xiaofang (2017). Mobi-SAGE: A sparse additive generative model for mobile app recommendation. IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, United States, 19-22 April 2017. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers. doi: 10.1109/ICDE.2017.43
2017
Conference Publication
An integrated model for effective saliency prediction
Sun, Xiaoshuai, Huang, Zi, Yin, Hongzhi and Shen, Heng Tao (2017). An integrated model for effective saliency prediction. AAAI Conference on Artificial Intelligence, San Francisco, CA, United States, 4-9 February 2017. Palo Alto, CA, United States: Association for the Advancement of Artificial Intelligence.
2017
Conference Publication
A time and sentiment unification model for personalized recommendation
Wang, Qinyong , Yin, Hongzhi and Wang, Hao (2017). A time and sentiment unification model for personalized recommendation. Joint Conference, APWeb-WAIM, Beijing, China, 7-9 July 2017. Cham, Switzerland: Springer. doi: 10.1007/978-3-319-63564-4 8
2017
Conference Publication
Influenced nodes discovery in temporal contact network
Huang, Jinjing, Lin, Tianqiao, Liu, An, Li, Zhixu, Yin, Hongzhi and Zhao, Lei (2017). Influenced nodes discovery in temporal contact network. 18th International Conference on Web Information Systems Engineering, WISE 2017, Puschino, Russia, 7-11 October 2017. Heidelberg, Germany: Springer. doi: 10.1007/978-3-319-68783-4_32
2017
Conference Publication
People opinion topic model: opinion based user clustering in social networks
Chen, Hongxu, Yin, Hongzhi, Li, Xue, Wang, Meng, Chen, Weitong and Chen, Tong (2017). People opinion topic model: opinion based user clustering in social networks. International Conference on World Wide Web Companion, Perth, Australia, 3-7 April 2017. Geneva, Switzerland: International World Wide Web Conferences Steering Committee. doi: 10.1145/3041021.3051159
2017
Conference Publication
SPTF: A scalable probabilistic tensor factorization model for semantic-aware behavior prediction
Yin, Hongzhi, Chen, Hongxu, Sun, Xiaoshuai, Wang, Hao, Wang, Yang and Nguyen, Quoc Viet Hung (2017). SPTF: A scalable probabilistic tensor factorization model for semantic-aware behavior prediction. 17th IEEE International Conference on Data Mining, ICDM 2017, New Orleans, LA, USA, November 18-21, 2017. New York, USA: Institute of Electrical and Electronics Engineers . doi: 10.1109/ICDM.2017.68
2016
Journal Article
Joint modeling of user check-in behaviors for real-time point-of-interest recommendation
Yin, Hongzhi, Cui, Bin, Zhou, Xiaofang, Wang, Weiqing, Huang, Zi and Sadiq, Shazia (2016). Joint modeling of user check-in behaviors for real-time point-of-interest recommendation. ACM Transactions on Information Systems, 35 (2) 2873055, 1-44. doi: 10.1145/2873055
2016
Journal Article
A fast sketch-based approach of top-k closeness centrality search on large networks
Shao, Y.-X., Cui, B., Ma, L. and Yin, H.-Z. (2016). A fast sketch-based approach of top-k closeness centrality search on large networks. Jisuanji Xuebao/Chinese Journal of Computers, 39 (10), 1965-1978. doi: 10.11897/SP.J.1016.2016.01965
2016
Journal Article
A spatial-temporal topic model for the semantic annotation of POIs in LBSNs
He, Tieke, Yin, Hongzhi, Chen, Zhenyu, Zhou, Xiaofang, Sadiq, Shazia and Luo, Bin (2016). A spatial-temporal topic model for the semantic annotation of POIs in LBSNs. ACM Transactions on Intelligent Systems and Technology, 8 (1) 12, 1-24. doi: 10.1145/2905373
2016
Journal Article
Adapting to user interest drift for POI recommendation
Yin, Hongzhi, Zhou, Xiaofang, Cui, Bin, Wang, Hao, Zheng, Kai and Nguyen, Quoc Viet Hung (2016). Adapting to user interest drift for POI recommendation. IEEE Transactions on Knowledge and Data Engineering, 28 (10) 7491346, 2566-2581. doi: 10.1109/TKDE.2016.2580511
2016
Conference Publication
A unified framework for fine-grained opinion mining from online reviews
Wang, Hao, Zhang, Chen, Yin, Hongzhi, Wang, Wei, Zhang, Jun and Xu, Fanjiang (2016). A unified framework for fine-grained opinion mining from online reviews. 49th Annual Hawaii International Conference on System Sciences, HICSS 2016, Koloa, HI, 5-8 January 2016. Piscataway, NJ, United States: I E E E. doi: 10.1109/HICSS.2016.144
2016
Conference Publication
Using detected visual objects to index video database
Du, Xingzhong, Yin, Hongzhi, Huang, Zi, Yang, Yi and Zhou, Xiaofang (2016). Using detected visual objects to index video database. Australasian Database Conference on Databases Theory and Applications, Sydney, Australia, 28-29 September 2016. Heidelberg, Germany: Springer. doi: 10.1007/978-3-319-46922-5_26
2016
Conference Publication
Expert team finding for review assignment
Yin, Hongzhi, Cui, Bin, Lu, Hua and Zhao, Lei (2016). Expert team finding for review assignment. Conference on Technologies and Applications of Artificial Intelligence (TAAI), Hsinchu, Taiwan, 25-27 November 2016. Piscataway, NJ, United States: IEEE. doi: 10.1109/TAAI.2016.7932314
2016
Conference Publication
LSIF: a system for large-scale information flow detection based on topic-related semantic similarity measurement
Zhao, Meng, Wang, Hao, Cao, Liangliang, Zhang, Chen, Yin, Hongzhi and Xu, Fanjiang (2016). LSIF: a system for large-scale information flow detection based on topic-related semantic similarity measurement. 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Singapore, 6-9 December 2016. Los Alamitos, CA United States: IEEE Computer Society. doi: 10.1109/WI-IAT.2015.2
2016
Book
Spatio-temporal recommendation in social media
Yin, Hongzhi and Cui, Bin (2016). Spatio-temporal recommendation in social media. Singapore: Springer Singapore. doi: 10.1007/978-981-10-0748-4
2016
Conference Publication
Discovering interpretable geo-social communities for user behavior prediction
Yin, Hongzhi, Hu, Zhiting, Zhou, Xiaofang, Wang, Hao, Zheng, Kai, Quoc Viet Hung Nguyen and Sadiq, Shazia (2016). Discovering interpretable geo-social communities for user behavior prediction. IEEE International Conference on Data Engineering (ICDE), Helsinki, Finland, 16-20 May 2016. Washington, DC United States: IEEE Computer Society. doi: 10.1109/ICDE.2016.7498303
2016
Conference Publication
Learning graph-based POI embedding for location-based recommendation
Xie, Min, Yin, Hongzhi, Wang, Hao, Xu, Fanjiang, Chen, Weitong and Wang, Sen (2016). Learning graph-based POI embedding for location-based recommendation. 25th ACM International Conference on Information and Knowledge Management, CIKM 2016, Indianapolis, IN, United States, 24 - 28 October 2016. New York, NY, United States: ACM. doi: 10.1145/2983323.2983711
2016
Conference Publication
SPORE: a sequential personalized spatial item recommender system
Wang, Weiqing, Yin, Hongzhi, Sadiq, Shazia, Chen, Ling, Xie, Min and Zhou, Xiaofang (2016). SPORE: a sequential personalized spatial item recommender system. IEEE International Conference on Data Engineering (ICDE), Helsinki, Finland, 16-20 May 2016. Washington, DC, United States: IEEE Computer Society. doi: 10.1109/ICDE.2016.7498304
2016
Conference Publication
Keyword-aware continuous kNN query on road networks
Zheng, Bolong, Zheng, Kai, Xiao, Xiaokui, Su, Han, Yin, Hongzhi, Zhou, Xiaofang and Li, Guohui (2016). Keyword-aware continuous kNN query on road networks. IEEE International Conference on Data Engineering (ICDE), Helsinki, Finland, 16-20 May 2016. Washington, DC United States: IEEE Computer Society. doi: 10.1109/ICDE.2016.7498297
Funding
Current funding
Past funding
Supervision
Availability
- Professor Hongzhi Yin is:
- Available for supervision
Before you email them, read our advice on how to contact a supervisor.
Available projects
-
Decentralised Collaborative Predictive Analytics on Personal Smart Devices
This project tackles the challenging problem of personalised predictive analytics with resource-constrained personal devices and massive-scale data. The knowledge to be generated concerns privacy, fairness, and resource efficiency in the era of Internet of Things. The expected outcomes include a collaborative learning paradigm for building personalised models on personal smart devices in open and fully decentralised settings. Privacy and model fairness are core tenets of the paradigm. Personalised predictive analytics is frontier research that will position Australia at the forefront of AI and give business the tools needed to deploy innovative business systems for market exploitation with a secure, equitable and competitive advantage.
This Earmarked Scholarship project is aligned with a recently awarded Category 1 research grant. It offers you the opportunity to work with leading researchers and contribute to large projects of national significance.
-
Building an Trustworthy Information Recommendation System
Build a trustworthy information recommender system by spearheading the design and development of cutting-edge LLM4Rec techniques, misinformation filters, and privacy protection mechanisms.
This Earmarked Scholarship project is aligned with a recently awarded Category 1 research grant. It offers you the opportunity to work with leading researchers and contribute to large projects of national significance.
Supervision history
Current supervision
-
Doctor Philosophy
Knowledge Graph-based Conversational Recommender Systems
Principal Advisor
Other advisors: Dr Miao Xu
-
Doctor Philosophy
Decentralised Collaborative Predictive Analytics on Personal Smart Devices
Principal Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Deep Learning for Univariate Time Series Anomaly Detection in Industrial IoT
Principal Advisor
Other advisors: Dr Thomas Taimre, Dr Slava Vaisman
-
Doctor Philosophy
Image Generation from Texts
Principal Advisor
Other advisors: Dr Thomas Taimre, Dr Slava Vaisman
-
Doctor Philosophy
Decentralized Learning for On-device Recommendation
Principal Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Decentralised Collaborative Predictive Analytics on Personal Smart Devices
Principal Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Decentralized Point-Of-Interest (POI) Recommender Systems
Principal Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Meeting Challenges on Secure Recommender Systems
Principal Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Decentralized Point-Of-Interest (POI) Recommender Systems
Principal Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Federated Graph Neural Network-based Recommender Systems
Principal Advisor
Other advisors: Dr Miao Xu
-
Doctor Philosophy
Secure Cross-device Federated Recommender Systems
Principal Advisor
Other advisors: Dr Miao Xu
-
Doctor Philosophy
Secure Cross-device Federated Recommender Systems
Principal Advisor
Other advisors: Dr Miao Xu
-
Doctor Philosophy
Decentralised Collaborative Predictive Analytics on Personal Smart Devices
Principal Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Deep Learning for Univariate Time Series Anomaly Detection in Industrial IoT
Principal Advisor
Other advisors: Dr Thomas Taimre, Dr Slava Vaisman
-
-
Doctor Philosophy
Decentralized Learning for On-device Recommendation
Principal Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Deep Learning for Graph Data Analysis
Principal Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Secure Cross-device Federated Recommender Systems
Principal Advisor
Other advisors: Dr Miao Xu
-
Doctor Philosophy
Joint Feature Learning for Recommender System
Principal Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Causal Analysis for Decision Support in Public Health
Associate Advisor
Other advisors: Professor Shazia Sadiq, Dr Rocky Chen
-
Doctor Philosophy
Scalable and Generalizable Graph Neural Networks
Associate Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Integrated high-throughput material synthesis and characterisation system
Associate Advisor
Other advisors: Associate Professor Jingwei Hou
-
Doctor Philosophy
Sustainable On-Device Recommender Systems
Associate Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Understanding and mitigating greenhouse gas emissions from wastewater system in the data era
Associate Advisor
Other advisors: Dr Haoran Duan, Professor Liu Ye
-
Doctor Philosophy
Scalable and Lightweight On-Device Recommender Systems
Associate Advisor
Other advisors: Dr Rocky Chen, Dr Junliang Yu
-
Doctor Philosophy
Lightweight Graph Neural Networks for Recommendation
Associate Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Understanding and mitigating greenhouse gas emissions from wastewater system in the data era
Associate Advisor
Other advisors: Dr Haoran Duan, Professor Liu Ye
-
Doctor Philosophy
Scalable and Lightweight On-Device Recommender Systems
Associate Advisor
Other advisors: Dr Rocky Chen
-
Doctor Philosophy
Understanding nitrous oxide emissions from wastewater treatment processes with stable isotopes and mathematical modelling
Associate Advisor
Other advisors: Dr Haoran Duan, Professor Liu Ye
Completed supervision
-
2025
Doctor Philosophy
Deep Learning for Univariate Time Series Anomaly Detection in Industrial IoT
Principal Advisor
Other advisors: Dr Thomas Taimre, Dr Slava Vaisman
-
2025
Doctor Philosophy
Decentralized Point-Of-Interest (POI) Recommender Systems
Principal Advisor
Other advisors: Dr Rocky Chen
-
2025
Doctor Philosophy
Secure Cross-device Federated Recommender Systems
Principal Advisor
Other advisors: Dr Miao Xu
-
2024
Doctor Philosophy
Federated Graph Neural Network-based Recommender Systems
Principal Advisor
Other advisors: Dr Miao Xu
-
2023
Doctor Philosophy
From Cloud to Device: Transforming Recommender Systems for On-Device Deployment
Principal Advisor
Other advisors: Dr Miao Xu
-
2023
Doctor Philosophy
Decentralized On-device Machine Learning and Unlearning for IoT Collaboration
Principal Advisor
Other advisors: Dr Miao Xu
-
2023
Doctor Philosophy
Enhancing Recommender Systems wtih Self-Supervised Learning
Principal Advisor
Other advisors: Professor Helen Huang
-
2022
Doctor Philosophy
Secure Recommender Systems
Principal Advisor
Other advisors: Professor Helen Huang
-
2022
Doctor Philosophy
Decentralized Framework for Embedding Large-scale Networks
Principal Advisor
Other advisors: Professor Helen Huang
-
2022
Doctor Philosophy
Toward Deep Conversational Recommender Systems
Principal Advisor
Other advisors: Professor Helen Huang
-
2021
Doctor Philosophy
Lightweight and Secure Deep Learning-based Mobile Recommender Systems
Principal Advisor
Other advisors: Professor Helen Huang
-
2020
Doctor Philosophy
Sequence Modelling for E-Commerce
Principal Advisor
Other advisors: Professor Xue Li
-
2020
Doctor Philosophy
Graph Representation Learning with Attribute Information
Principal Advisor
Other advisors: Professor Xue Li
-
2020
Master Philosophy
Advanced Machine Learning Algorithms for Discrete Datasets
Principal Advisor
Other advisors: Professor Shazia Sadiq
-
2017
Doctor Philosophy
POINT OF INTERESTS RECOMMENDATION IN LOCATION-BASED SOCIAL NETWORKS
Principal Advisor
Other advisors: Professor Shazia Sadiq
-
2025
Doctor Philosophy
Understanding and mitigating greenhouse gas emissions from wastewater system in the data era
Associate Advisor
Other advisors: Dr Haoran Duan, Professor Liu Ye
-
2023
Doctor Philosophy
Multi-modal Data Modeling with Awareness of Efficiency, Reliability, and Privacy
Associate Advisor
Other advisors: Professor Helen Huang
-
2022
Doctor Philosophy
Neural Attentive Recommender Systems
Associate Advisor
Other advisors: Professor Helen Huang, Dr Rocky Chen
-
2022
Master Philosophy
An exploration into the correlation between users' intentions and candidates for query- and non-query-based retrieval
Associate Advisor
Other advisors: Professor Helen Huang
-
2021
Doctor Philosophy
Towards Efficient Similarity Search with Semantic Hashing Techniques
Associate Advisor
Other advisors: Professor Helen Huang
-
2021
Doctor Philosophy
Multimedia Content Analytics with Modality Transition
Associate Advisor
Other advisors: Professor Helen Huang
-
2018
Doctor Philosophy
Understand Video Event by Exploiting Semantic and Temporal Information for Classification and Retrieval
Associate Advisor
Other advisors: Professor Helen Huang
-
Doctor Philosophy
Modelling Sequential Patterns of User Behaviour in Recommender Systems
Associate Advisor
Other advisors: Professor Helen Huang
Media
Enquiries
For media enquiries about Professor Hongzhi Yin's areas of expertise, story ideas and help finding experts, contact our Media team: