Skip to menu Skip to content Skip to footer
Professor Brian Lovell
Professor

Brian Lovell

Email: 
Phone: 
+61 7 336 54134

Overview

Background

Brian C. Lovell, born in Brisbane, Australia in 1960, received his BE in Electrical Engineering (Honours I) in 1982, BSc in Computer Science in 1983, and PhD in Signal Processing in 1991, all from the University of Queensland (UQ). Currently, he is the Project Leader of the Advanced Surveillance Group at UQ. Professor Lovell served as the President of the International Association of Pattern Recognition from 2008 to 2010, is a Senior Member of the IEEE, a Fellow of the IEAust, Fellow of the Asia-Pacific AI Association, and has been a voting member for Australia on the Governing Board of the International Association for Pattern Recognition since 1998.

He is an Honorary Professor at IIT Guwahati, India; an Associate Editor of the Pattern Recognition Journal; an Associate Editor-in-Chief of the Machine Learning Research Journal; a member of the IAPR TC4 on Biometrics; and a member of the Awards Committee and Education Committee of the IEEE Biometrics Council.

In addition, Professor Lovell has chaired and co-chaired numerous international conferences in the field of pattern recognition, including ICPR2008, ACPR2011, ICIP2013, ICPR2016, and ICPR2020. His Advanced Surveillance Group has collaborated with port, rail, and airport organizations, as well as several national and international agencies, to develop technology-based solutions for operational and security concerns.

His current research projects are in the fields of:

  • Artificial Intelligence
  • StyleGAN
  • Stable Diffusion
  • Deep Learning
  • Biometrics
  • Robust Face Recognition using Deep Learning
  • Masked Face Recognition for COVID-19 Pandemic
  • Adversarial Attacks on AI Systems
  • Digital Pathology
  • Neurofibroma Detection and Assessment
  • Object Detection with Deep Learning

I am actively recruiting PhD students in Artificial Intelligence to work with my team. If you are interested and have a strong record from a good university, with a publication in a good conference such as CVPR, ICCV, ECCV, or MICCAI please send your CV to me. Full Scholarships (Tuition and Living) can be awarded within one month for truly exceptional candidates.

Availability

Professor Brian Lovell is:
Available for supervision
Media expert

Qualifications

  • Bachelor (Honours) of Engineering, The University of Queensland
  • Bachelor of Science, The University of Queensland
  • Doctor of Philosophy, The University of Queensland

Research interests

  • Face Recognition with Deep Learning

    We develop new technologies to improve face recognition. Our group is first in the world to develop face recognition databases based entirely on synthetic faces. Other aspects of face recognition and affective computing (determining emotions from facial expressions) are current research themes within the group.

  • Object Detection Using Deep Learning

    We are researching improved techniques to identify small objects with high precision

  • Synthetic Face and Image Generation

    We were the first to investigate training face recognition systems on synthetic faces.

Research impacts

I have been pleased that my biometrics and other research has and is being been adopted commercially worldwide. My earlier face recognition systems have been installed by the University of San Francisco and Swinburne University among many other sites. More recently we have developed face recognition systems that are insensitive to the wearing of masks. These systems depend on our EDITH Ethical Face database of synthetic faces. To the best of our knowledge, we are the only group worldwide who can synthesise faces to order to train advanced ethical face recognition systems.

These systems have been adopted in the UK in 2020 by Facewatch Ltd and are currently being considered by the UK National Health Service and also Queensland Health to manage COVID 19 quarantine facilities and border control. In 2020-2021 we developed a touchless face mask fitting system for health workers to reduce the wastage of PPE and improve COVID19 management. This system is deployed on Queensland Health IT infrastructure in February 2021 and is planned to be made available nationally and internationally. The system has the potential to save millions of dollars in wasted PPE.

PRIZES, HONOURS AND AWARDS

Fellow of the IAPR, 2008 Multiple Best Paper prizes. Awarded Certificate of Recognition as most downloaded author at UQ by UQCybrary. Over 26,000 copies of my research papers were downloaded from the UQ EPrints archive in the 12 months ending May, 2005. APICTA Trophy for Best Research and Development, 2011, Face Recognition in a Crowd IFSEC Trophy 2011, Best CCTV Product of the Year (excluding cameras and lens), Face Recognition in a Crowd Technology Winner, ADS Security Innovation Award, 2021, Galahad facial detection and recognition software, awarded by the UK Home Office at the Security and Policing Show on March 9, 2021.

Works

Search Professor Brian Lovell’s works on UQ eSpace

351 works between 1988 and 2024

1 - 20 of 351 works

2024

Journal Article

Multivariate prototype representation for domain-generalized incremental learning

Peng, Can, Koniusz, Piotr, Guo, Kaiyu, Lovell, Brian C. and Moghadam, Peyman (2024). Multivariate prototype representation for domain-generalized incremental learning. Computer Vision and Image Understanding, 249 104215, 104215. doi: 10.1016/j.cviu.2024.104215

Multivariate prototype representation for domain-generalized incremental learning

2024

Journal Article

Investigating the 17 March 2013 geomagnetic storm impacts on the wholly coupled solar wind‐magnetosphere‐ionosphere‐thermosphere system‐of‐systems

Horvath, Ildiko and Lovell, Brian C. (2024). Investigating the 17 March 2013 geomagnetic storm impacts on the wholly coupled solar wind‐magnetosphere‐ionosphere‐thermosphere system‐of‐systems. Journal of Geophysical Research: Space Physics, 129 (9) e2024JA032917. doi: 10.1029/2024ja032917

Investigating the 17 March 2013 geomagnetic storm impacts on the wholly coupled solar wind‐magnetosphere‐ionosphere‐thermosphere system‐of‐systems

2024

Journal Article

Investigating the Hot Zone Developed Under Short‐Circuiting Conditions and the Coupled Magnetosphere‐Ionosphere (M‐I) System for the Subauroral Arc's Inner‐Magnetosphere Generation Environment

Horvath, Ildiko and Lovell, Brian C. (2024). Investigating the Hot Zone Developed Under Short‐Circuiting Conditions and the Coupled Magnetosphere‐Ionosphere (M‐I) System for the Subauroral Arc's Inner‐Magnetosphere Generation Environment. Journal of Geophysical Research: Space Physics, 129 (6) e2024JA032552. doi: 10.1029/2024ja032552

Investigating the Hot Zone Developed Under Short‐Circuiting Conditions and the Coupled Magnetosphere‐Ionosphere (M‐I) System for the Subauroral Arc's Inner‐Magnetosphere Generation Environment

2024

Journal Article

Domain-aware triplet loss in domain generalization

Guo, Kaiyu and Lovell, Brian C. (2024). Domain-aware triplet loss in domain generalization. Computer Vision and Image Understanding, 243 103979, 103979. doi: 10.1016/j.cviu.2024.103979

Domain-aware triplet loss in domain generalization

2023

Conference Publication

Uncertainty-guided cross-modality semi-supervised learning for MRI segmentation

Li, Chaoyi and Lovell, Brian C. (2023). Uncertainty-guided cross-modality semi-supervised learning for MRI segmentation. 2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Port Macquarie, NSW, Australia, 28 November - 1 December 2023. Piscataway, NJ, United States: IEEE. doi: 10.1109/dicta60407.2023.00018

Uncertainty-guided cross-modality semi-supervised learning for MRI segmentation

2023

Journal Article

Antisunward streaming westward Sub‐Auroral Ion Drifts (SAID) developed in the postmidnight (1‐4) magnetic local time sector during 2013

Horvath, Ildiko and Lovell, Brian C. (2023). Antisunward streaming westward Sub‐Auroral Ion Drifts (SAID) developed in the postmidnight (1‐4) magnetic local time sector during 2013. Journal of Geophysical Research: Space Physics, 128 (9) e2023JA031808. doi: 10.1029/2023ja031677

Antisunward streaming westward Sub‐Auroral Ion Drifts (SAID) developed in the postmidnight (1‐4) magnetic local time sector during 2013

2023

Conference Publication

Knowing the unknown: open-set bacteria classification in gram stain microscopic images

Alhammad, Sarah and Lovell, Brian C. (2023). Knowing the unknown: open-set bacteria classification in gram stain microscopic images. 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, QLD, Australia, 18-23 June 2023. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers. doi: 10.1109/ijcnn54540.2023.10191073

Knowing the unknown: open-set bacteria classification in gram stain microscopic images

2023

Journal Article

Sub‐Auroral Ion Drifts (SAID) Developed Over the Northern Winter Hemisphere at Dawn During 2016–2017

Horvath, Ildiko and Lovell, Brian C. (2023). Sub‐Auroral Ion Drifts (SAID) Developed Over the Northern Winter Hemisphere at Dawn During 2016–2017. Journal of Geophysical Research: Space Physics, 128 (4) e2022JA031228, 1-18. doi: 10.1029/2022ja031228

Sub‐Auroral Ion Drifts (SAID) Developed Over the Northern Winter Hemisphere at Dawn During 2016–2017

2023

Journal Article

DIODE: dilatable incremental object detection

Peng, Can, Zhao, Kun, Maksoud, Sam, Wang, Tianren and Lovell, Brian C. (2023). DIODE: dilatable incremental object detection. Pattern Recognition, 136 109244, 109244. doi: 10.1016/j.patcog.2022.109244

DIODE: dilatable incremental object detection

2023

Journal Article

Subauroral flows and associated magnetospheric and ionospheric phenomena developed during 7‐8 September 2017

Horvath, Ildiko and Lovell, Brian C. (2023). Subauroral flows and associated magnetospheric and ionospheric phenomena developed during 7‐8 September 2017. Journal of Geophysical Research: Space Physics, 128 (3) e2022JA030966, 1-20. doi: 10.1029/2022ja030966

Subauroral flows and associated magnetospheric and ionospheric phenomena developed during 7‐8 September 2017

2023

Journal Article

Abnormal Sub‐Auroral Ion Drifts (ASAID) developed in various inner‐magnetosphere configurations at geomagnetically quiet times

Horvath, Ildiko and Lovell, Brian C. (2023). Abnormal Sub‐Auroral Ion Drifts (ASAID) developed in various inner‐magnetosphere configurations at geomagnetically quiet times. Journal of Geophysical Research: Space Physics, 128 (1) ARTN e2022JA031004, 1-19. doi: 10.1029/2022ja031004

Abnormal Sub‐Auroral Ion Drifts (ASAID) developed in various inner‐magnetosphere configurations at geomagnetically quiet times

2023

Conference Publication

End to end generative meta curriculum learning for medical data augmentation

Li, Meng, Li, Chaoyi, Peng, Can, Liu, Liangchen and Lovell, Brian (2023). End to end generative meta curriculum learning for medical data augmentation. 30th IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8-11 October 2023. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers. doi: 10.1109/ICIP49359.2023.10222093

End to end generative meta curriculum learning for medical data augmentation

2023

Conference Publication

Dynamic curriculum learning via in-domain uncertainty for medical image classification

Li, Chaoyi, Li, Meng, Peng, Can and Lovell, Brian C. (2023). Dynamic curriculum learning via in-domain uncertainty for medical image classification. MICCAI 2023: 26th International Conference, Vancouver, BC, Canada, 8-12 October 2023. Cham, Switzerland: Springer Nature Switzerland. doi: 10.1007/978-3-031-43904-9_72

Dynamic curriculum learning via in-domain uncertainty for medical image classification

2022

Journal Article

Duskside sub‐auroral polarization streams (SAPS) and dawnside subauroral flows during the magnetically quiet 24 November and moderately active 25–27 November 2008

Horvath, Ildiko and Lovell, Brian C. (2022). Duskside sub‐auroral polarization streams (SAPS) and dawnside subauroral flows during the magnetically quiet 24 November and moderately active 25–27 November 2008. Journal of Geophysical Research: Space Physics, 127 (12) ARTN e2022JA030609. doi: 10.1029/2022ja030609

Duskside sub‐auroral polarization streams (SAPS) and dawnside subauroral flows during the magnetically quiet 24 November and moderately active 25–27 November 2008

2022

Journal Article

Newly formed dawnside, duskside, and nightside subauroral flows developed during magnetically active times

Horvath, Ildiko and Lovell, Brian C. (2022). Newly formed dawnside, duskside, and nightside subauroral flows developed during magnetically active times. Journal of Geophysical Research: Space Physics, 127 (10) e2021JA030215, 1-21. doi: 10.1029/2021ja030215

Newly formed dawnside, duskside, and nightside subauroral flows developed during magnetically active times

2022

Conference Publication

Efficient cell labelling for gram stain WSIs

Alhammad, Sarah, Zhang, Teng, Zhao, Kun, Hobson, Peter, Jennings, Anthony and Lovell, Brian C. (2022). Efficient cell labelling for gram stain WSIs. 26th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21-25 August 2022. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers. doi: 10.1109/icpr56361.2022.9956490

Efficient cell labelling for gram stain WSIs

2022

Conference Publication

MedViTGAN: end-to-end conditional GAN for histopathology image augmentation with vision transformers

Li, Meng, Li, Chaoyi, Hobson, Peter, Jennings, Tony and Lovell, Brian C. (2022). MedViTGAN: end-to-end conditional GAN for histopathology image augmentation with vision transformers. 26th International Conference on Pattern Recognition / 8th International Workshop on Image Mining - Theory and Applications (IMTA), Montreal, Canada, 21-25 August 2022. New York, NY USA: Institute of Electrical and Electronics Engineers. doi: 10.1109/icpr56361.2022.9956431

MedViTGAN: end-to-end conditional GAN for histopathology image augmentation with vision transformers

2022

Conference Publication

Few-Shot Class-Incremental Learning from an Open-Set Perspective

Peng, Can, Zhao, Kun, Wang, Tianren, Li, Meng and Lovell, Brian C. (2022). Few-Shot Class-Incremental Learning from an Open-Set Perspective. 17th European Conference on Computer Vision - ECCV 2022, Tel Aviv, Israel, 23–27 October 2022. Cham, Switzlerland: Springer Nature. doi: 10.1007/978-3-031-19806-9_22

Few-Shot Class-Incremental Learning from an Open-Set Perspective

2021

Conference Publication

Efficient DNN-Based Classification of Whole Slide Gram Stain Images for Microbiology

Alhammad, Sarah, Zhao, Kun, Jennings, Anthony, Hobson, Peter, Smith, Daniel F., Baker, Brett, Staweno, Justin and Lovell, Brian C. (2021). Efficient DNN-Based Classification of Whole Slide Gram Stain Images for Microbiology. 2021 Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, QLD Australia, 29 November - 1 December 2021. Piscataway, NJ United States: IEEE. doi: 10.1109/dicta52665.2021.9647415

Efficient DNN-Based Classification of Whole Slide Gram Stain Images for Microbiology

2021

Journal Article

SID: Incremental learning for anchor-free object detection via Selective and Inter-related Distillation

Peng, Can, Zhao, Kun, Maksoud, Sam, Li, Meng and Lovell, Brian C. (2021). SID: Incremental learning for anchor-free object detection via Selective and Inter-related Distillation. Computer Vision and Image Understanding, 210 103229, 103229. doi: 10.1016/j.cviu.2021.103229

SID: Incremental learning for anchor-free object detection via Selective and Inter-related Distillation

Funding

Current funding

  • 2024 - 2025
    The Neurofibromatosis type 1 (NF1) Cutaneous Neurofibroma Consortium: Identifying Genetic modifiers of disease burden to inform treatment pathways (MRFF Neurofibromatosis led by Uni Newcastle)
    University of Newcastle
    Open grant
  • 2021 - 2025
    UQAI Scholarship
    AR Live Systems Ltd
    Open grant

Past funding

  • 2020 - 2021
    N95 Mask Fitment
    Queensland Health
    Open grant
  • 2019 - 2021
    AR Live Face Recognition and AI Project
    AR Live Systems Ltd
    Open grant
  • 2019 - 2021
    Justified Autonomous Unmanned Aerial System Effect (Defence CRC for Trusted Autonomous Systems project led by Skyborne Technologies Pty Ltd)
    Skyborne Technologies Pty Ltd
    Open grant
  • 2019
    Development of a standalone program for the automation of quantitative fractography - 2
    Commonwealth Defence Science and Technology Group
    Open grant
  • 2019
    Expanding Wiener, a high performance GPU cluster
    UQ Research Facilities Infrastructure Grants
    Open grant
  • 2018 - 2020
    Digitisation and image recognition in environmental chemistry
    UniQuest Pty Ltd
    Open grant
  • 2017 - 2022
    Fusion of Digital Microscopy and Plain Text Reports for Automated Analysis
    ARC Linkage Projects
    Open grant
  • 2017 - 2018
    Further development of a demonstrator for the automation of quantitative fractography
    Commonwealth Defence Science and Technology Group
    Open grant
  • 2017 - 2019
    Vision based automated corrosion analysis for galvanised steel lattice towers
    UniQuest Pty Ltd
    Open grant
  • 2016 - 2017
    Development of a demonstrator for the automation of quantitative fractography
    Commonwealth Defence Science and Technology Group
    Open grant
  • 2015
    ILC Coal Carry Back Project
    Australian Mathematical Sciences Institute Industry Internship Program
    Open grant
  • 2014 - 2015
    AMSI computer vision project
    Australian Mathematical Sciences Institute Industry Internship Program
    Open grant
  • 2013 - 2017
    Application of manifold-based image analysis to identify subtle changes in digitally-captured pathology samples
    ARC Linkage Projects
    Open grant
  • 2013
    AMSI Internship Program - Vehicle number plate identification
    Australian Mathematical Sciences Institute Industry Internship Program
    Open grant
  • 2013 - 2014
    Investigating repeatable ionospheric features during large space storms and superstorms
    United States Asian Office of Aerospace Research and Development
    Open grant
  • 2012 - 2016
    Forensic reasoning and uncertainty: Identifying pattern and impression expertise
    ARC Linkage Projects
    Open grant
  • 2011 - 2013
    Baseline Rail Level Crossing Video (R2.119)
    CRC for Rail Innovation
    Open grant
  • 2010 - 2012
    Assessing error in forensic identification: The development of scientific and legal standards of evidence
    UQ Collaboration and Industry Engagement Fund
    Open grant
  • 2007 - 2009
    Markov field theory applied to sensor networks analysis and design (ARC DP0772218 administered by University of South Australia)
    University of South Australia
    Open grant
  • 2004
    ARC Network in Imaging Science and Technology
    ARC Seed Funding for Research Networks
    Open grant
  • 1996
    Development of metrics for texture classification algorithms
    University of Queensland New Staff Research Grant
    Open grant

Supervision

Availability

Professor Brian Lovell is:
Available for supervision

Before you email them, read our advice on how to contact a supervisor.

Available projects

  • Detecting and Classifying Neurofibromas using Deep Learning

    Neurofibromatosis type 1 (NF1) is one of the most common single-gene inherited disorders globally, with an incidence of 1/2500 individuals. While several phenotypes are associated with the disorder, the most common manifestation is cutaneous neurofibroma. The majority of adults develop these distressing cutaneous tumours (cNF), which increase in severity with age. Adult patients report cosmetic disfigurement due to cNF as the greatest burden of living with NF1. There is no way to predict tumour severity which can range from <100 to thousands. Youth and families experience reduced quality of life due to concerns about this uncertain future. We don’t yet understand why this condition is so variable or have any effective medical treatments. In the proposed research, we will assemble a consortium of internationally recognised experts in NF1 with access and capacity to recruit and phenotype patients to drive the largest genome-wide association and epigenome-wide association studies of the modifier gene networks driving the cutaneous phenotypic variance in NF1. We will then use individualised pharmacological annotation of these networks to identify precision treatment options to mitigate the most distressing and life quality damaging aspects of this devastating illness.

  • Classifying Gram Stain Images Using Transformers and Deep Learning

    Microscopic diagnosis of Gram stain smears is one of the most time and labor intensive tasks in the clinical setting. With the recent development of automated digital pathology scanners, it is now possible to economically obtain high-resolution Gram stain whole slide images for routine diagnosis. This finally opens the doorway to automated identification of bacteria types from digital images in a clinical setting. However, Gram stain whole slide images comprise billions of pixels and suffer from high morphological heterogeneity as well as from many different types of artifacts. Identifying multiple types of tiny bacteria with various densities from an extremely large whole slide image is incredibly challenging. To this end, we propose an end-to-end framework with a novel loss function that tackles the patch aggregation while considering the correlation of different labels in this multi-label scenario. Our framework first effectively integrates the relations among multiple patch features, and then utilizes a class aggregator to generate a robust slide-level feature representation under multi-label setting. Furthermore, we propose a novel loss function integrating two regularization terms: 1) a negative regulator that reduces the confusion between bacteria and negative samples without any bacteria, and 2) an adversarial loss that alleviates the impact of background specification among various tissue samples. We show that the proposed method achieves superior performance compared to several state-of-the-art methods.

  • Incremental Learning for AI

    Incremental learning requires a model to continually learn new tasks from streaming data. However, traditional fine-tuning of a well-trained deep neural network on a new task will dramatically degrade performance on the old task — a problem known as catastrophic forgetting. We address this issue in the context of anchor-free object detection, which is a new trend in computer vision as it is simple, fast, and flexible. Simply adapting current incremental learning strategies fails on these anchor-free detectors due to lack of consideration of their specific model structures. To deal with the challenges of incremental learning on anchor-free object detectors, we propose a novel incremental learning paradigm called Selective and Inter-related Distillation (SID). In addition, a novel evaluation metric is proposed to better assess the performance of detectors under incremental learning conditions. By selective distilling at the proper locations and further transferring additional instance relation knowledge, our method demonstrates significant advantages on the benchmark datasets PASCAL VOC and COCO.

  • Text to Face Synthesis using Stable Diffusion for Biometrics Research

    Text-to-Face (TTF) synthesis is a challenging task with great potential for diverse computer vision applications. Compared to Text-to-Image (TTI) synthesis tasks, the textual description of faces can be much more complicated and detailed due to the variety of facial attributes and the parsing of high dimensional abstract natural language. We propose a text-to-face model that should not only produce images in high resolution (10241024) and text-to-image consistency, but also output multiple faces to cover a wide range of unspecified facial features in a natural way. By fine-tuning the multi-label classifier and image encoder, our model obtains the vectors and image embeddings which are used to manipulate the noise vector sampled from the normal distribution. Afterwards, the manipulated noise vector is fed into a pre-trained high-resolution image generator to produce a set of faces with desired facial attributes. We refer to our model as TTF-HD. Experimental results show that TTF-HD generates high-quality faces and achieves state-of-the-art performance.

Supervision history

Current supervision

  • Doctor Philosophy

    Medical Image Segmentation with Limited Annotated Data

    Principal Advisor

    Other advisors: Associate Professor Marcus Gallagher

  • Doctor Philosophy

    The role of duality in machine learning and computer vision.

    Principal Advisor

    Other advisors: Dr Mahsa Baktashmotlagh

  • Doctor Philosophy

    Enhancing Building Fire Safety by Utilising Machine Learning Techniques

    Associate Advisor

    Other advisors: Dr Xin Yu

  • Doctor Philosophy

    Modelling cloud movement to generate short term solar irradiance predictions and subsequent expected PV power production

    Associate Advisor

    Other advisors: Professor Eve McDonald-Madden, Dr Hui Ma

  • Doctor Philosophy

    Generating data-driven continuous optimization problems for benchmarking

    Associate Advisor

    Other advisors: Associate Professor Marcus Gallagher

Completed supervision

Media

Enquiries

Contact Professor Brian Lovell directly for media enquiries about:

  • Artificial Intelligence
  • Biometrics
  • Border control
  • Computer modelling
  • Computer vision
  • Deep Learning
  • Face Recognition
  • Face-recognition technology
  • Identification technology
  • Image processing
  • Information technology
  • National security surveillance
  • Networks - neural
  • Neural networks - artificial
  • Pattern Recognition
  • Pattern recognition - digital imaging
  • Signal Processing
  • Wearable Technologies

Need help?

For help with finding experts, story ideas and media enquiries, contact our Media team:

communications@uq.edu.au