2007 Journal Article Structure, function and diversity of plant purple acid phosphatasesLeung, Eleanor W. W., Teixeira, Marina, Guddat, Luke W., Mitić, Natasa and Schenk, Gerhard (2007). Structure, function and diversity of plant purple acid phosphatases. Current Topics in Plant Biology, 8, 21-31. |
2006 Journal Article Anomalous scattering analysis of Agrobacterium radiobacter phosphotriesterase: the prominent role of iron in the heterobinuclear active siteJackson, Colin J., Carr, Paul D., Kim, Hye-Kyung, Liu, Jian-Wei, Herrald, Paul, Mitic, Natasa, Schenk, Gerhard, Smith, Clyde A. and Ollis, David L. (2006). Anomalous scattering analysis of Agrobacterium radiobacter phosphotriesterase: the prominent role of iron in the heterobinuclear active site. Biochemical Journal, 397 (3), 501-508. doi: 10.1042/BJ20060276 |
2006 Journal Article The Catalytic Mechanisms of Binuclear MetallohydrolasesMitic, Natasa, Smith, Sarah J., Neves, Ademir, Guddat, Luke W., Gahan, Lawrence R. and Schenk, Gerhard (2006). The Catalytic Mechanisms of Binuclear Metallohydrolases. Chemical Reviews, 106 (8), 3338-3363. doi: 10.1021/cr050318f |
2006 Journal Article Mammalian-like purple acid phosphatases in plantsDe Jersey, J., Zheng, Yuan-Zhi, Fan, H. K., Schenk, G., Guddat, L. and Hamilton, S. (2006). Mammalian-like purple acid phosphatases in plants. Chemical Research In Chinese Universities, 22 (2), 263-264. doi: 10.1016/S1005-9040(06)60093-7 |
2006 Journal Article Inhibition studies of purple acid phosphatases: Implications for the catalytic mechanismElliott, T. W., Mitic, N., Gahan, L. R., Guddat, L. W. and Schenk, G. (2006). Inhibition studies of purple acid phosphatases: Implications for the catalytic mechanism. Journal of the Brazilian Chemical Society, 17 (8), 1558-1565. doi: 10.1590/S0103-50532006000800011 |
2006 Journal Article Identification and molecular modeling of a novel, plant-like, human purple acid phosphataseFlanagan, J. U., Cassady, A. I., Schenk, G., Guddat, L. W. and Hume, D. A. (2006). Identification and molecular modeling of a novel, plant-like, human purple acid phosphatase. Gene, 377 (1), 12-20. doi: 10.1016/j.gene.2006.02.031 |
2005 Journal Article Human tartrate-resistant acid phosphatase becomes an effective ATPase upon proteolytic activationMitic, N., Valizadeh, M., Leung, E. W. W., de Jersey, J., Hamilton, S., Hume, D. A., Cassady, A. I. and Schenk, G. (2005). Human tartrate-resistant acid phosphatase becomes an effective ATPase upon proteolytic activation. Archives of Biochemistry And Biophysics, 439 (2), 154-164. doi: 10.1016/j.abb.2005.05.013 |
2005 Journal Article Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphataseSchenk, G., Gahan, L. R., Carrington, L. E., Mitic, N., Valizadeh, M., Hamilton, S. E., de Jersey, J. and Guddat, L. W. (2005). Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase. Proceedings of The National Academy of Sciences of The United States of America, 102 (2), 273-278. doi: 10.1073/pnas.0407239102 |
2005 Journal Article A New Heterobinuclear FeIIICuII Complex with a Single Terminal FeIII–O(phenolate) Bond. Relevance to Purple Acid Phosphatases and NucleasesLanznaster, Mauricio, Neves, Ademir, Bortoluzzi, Adailton J., Aires, Veronika V. E., Szpoganicz, Bruno, Terenzi, Hernan, Severino, Patricia C., Fuller, Julie M., Drew, Simon C., Gahan, Lawrence R., Hanson, Graeme R., Riley, Mark J. and Schenk, Gerhard (2005). A New Heterobinuclear FeIIICuII Complex with a Single Terminal FeIII–O(phenolate) Bond. Relevance to Purple Acid Phosphatases and Nucleases. Journal of Biological Inorganic Chemistry, 10 (4), 319-332. doi: 10.1007/s00775-005-0635-7 |
2004 Journal Article Phosphotyrosyl peptides and analogues as substrates and inhibitors of purple acid phosphatasesValizadeh, Mohsen, Schenk, Gerhard, Nash, Kevin, Oddie, Geoff W., Guddat, Luke W., Hume, David A., de Jersey, John, Burke, Terrence R. and Hamilton, Susan (2004). Phosphotyrosyl peptides and analogues as substrates and inhibitors of purple acid phosphatases. Archives of Biochemistry And Biophysics, 424 (2), 154-162. doi: 10.1016/j.abb.2004.01.008 |
2004 Journal Article Comparison between the geometric and electronic structures and reactivities of {FeNO}(7) and {FeO2}(8) complexes: A density functional theory studySchenk, G., Pau, M. Y. M. and Solomon, E. I. (2004). Comparison between the geometric and electronic structures and reactivities of {FeNO}(7) and {FeO2}(8) complexes: A density functional theory study. Journal of The American Chemical Society, 126 (2), 505-515. doi: 10.1021/ja036715u |
2004 Journal Article Direct electrochemistry of porcine purple acid phosphatase (uteroferrin)Bernhardt, P. V., Schenk, G. and Wilson, G. J. (2004). Direct electrochemistry of porcine purple acid phosphatase (uteroferrin). Biochemistry, 43 (32), 10387-10392. doi: 10.1021/bi0490338 |
2003 Journal Article Rapid-freeze-quench magnetic circular dichroism of intermediate X in ribonucleotide reductase: New structural insightMitic, N., Saleh, L., Schenk, G., Bollinger, J. Martin Jr. and Solomon, E. I. (2003). Rapid-freeze-quench magnetic circular dichroism of intermediate X in ribonucleotide reductase: New structural insight. Journal of The American Chemical Society, 125 (37), 11200-11201. doi: 10.1021/ja036556e |
2003 Journal Article Spectroscopic characterization of soybean lipoxygenase-1 mutants: the role of second coordination sphere residues in the regulation of enzyme activitySchenk, Gerhard, Neidig, Michael L., Zhou, Jing, Holman, Theodore R. and Solomon, Edward I. (2003). Spectroscopic characterization of soybean lipoxygenase-1 mutants: the role of second coordination sphere residues in the regulation of enzyme activity. Biochemistry, 42 (24), 7294-7302. doi: 10.1021/bi027380g |
2002 Journal Article Reactivity of M-II metal-substituted derivatives of pig purple acid phosphatase (Uteroferrin) with phosphateTwitchett, M. B., Schenk, G., Aquino, M. A. S., Yiu, D. T. Y., Lau, T. C. and Sykes, A. G. (2002). Reactivity of M-II metal-substituted derivatives of pig purple acid phosphatase (Uteroferrin) with phosphate. Inorganic Chemistry, 41 (22), 5787-5794. doi: 10.1021/ic020037f |
2001 Journal Article A purple acid phosphatase from sweet potato contains an antiferromagnetically coupled binuclear Fe-Mn centerSchenk, Gerhard, Boutchard, Clare L., Carrington, Lyle E., Noble, Christopher J., Moubaraki, Boujemaa, Murray, Keith S., de Jersey, John, Hanson, Graeme R. and Hamilton, Susan (2001). A purple acid phosphatase from sweet potato contains an antiferromagnetically coupled binuclear Fe-Mn center. Journal of Biological Chemistry, 276 (22), 19084-19088. doi: 10.1074/jbc.M009778200 |
2000 Journal Article Structure, function and regulation of tartrate-resistant acid phosphataseOddie, G. W., Schenk, G., Angel, N. Z., Walsh, N., Guddat, L. W., deJersey, J., Cassady, A. I., Hamilton, S. E. and Hume, D. A. (2000). Structure, function and regulation of tartrate-resistant acid phosphatase. Bone, 27 (5), 575-584. doi: 10.1016/S8756-3282(00)00368-9 |
2000 Journal Article Identification of mammalian-like purple acid phosphatases in a wide range of plantsSchenk, G., Ge, Y., Guddat, L., Carrington, L. E., Hume, D. A., Hamilton, S. E. and deJersey, J. (2000). Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene, 250 (1-2), 117-125. doi: 10.1016/S0378-1119(00)00186-4 |
2000 Journal Article Purple acid phosphatases from bacteria: Structural similarities to mammalian and plant enzymesSchenk, G., Korsinczky, M. L. J., Hume, D. A., Hamilton, S. E. and De Jersey, J. (2000). Purple acid phosphatases from bacteria: Structural similarities to mammalian and plant enzymes. Gene, 255 (2), 419-424. doi: 10.1016/S0378-1119(00)00305-X |
1999 Journal Article Crystallization and preliminary X-ray diffraction data for a purple acid phosphastase from sweet potatoSchenk, G., Carrington, L., Hamilton, S. E., De Jersey, J. and Guddat, L. W. (1999). Crystallization and preliminary X-ray diffraction data for a purple acid phosphastase from sweet potato. Acta Crystallographica Section D: Biological Crystallography, 55 (12), 2051-2052. doi: 10.1107/S0907444999012597 |