Skip to menu Skip to content Skip to footer
Associate Professor Anne Lagendijk
Associate Professor

Anne Lagendijk

Email: 
Phone: 
+61 7 334 62105

Overview

Availability

Associate Professor Anne Lagendijk is:
Available for supervision

Qualifications

  • Doctor of Philosophy, Utrecht University

Research interests

  • Cellular mechanisms to maintain a healthy vasculature

    Our vascular system transports approximately 7500 liters of blood each day. Arteries deliver oxygen and nutrients throughout the body after which the venous system returns the deoxygenated blood back to the heart. Architecturally, these blood vessels are extremely heterogeneous. The Lagendijk group investigates the development and maintenance of a functional blood vessel network in zebrafish and bioengineered human microvessels. The cells that make up our blood vessels continuously adapt their size, adhesiveness and compliance order to ensure the right balance between vessel integrity and permeability in a context dependent manner. Mechanical cues play a major role in the functional adaptation of blood vessels. Despite ongoing research unraveling the structural components of mechanical hubs in the cells, it is essential to assess the magnitude of forces that are transduced at these sites and the biological consequences for vessel function. Dr. Lagendijk has previously developed a VE-cadherin tension biosensor line in zebrafish. This line provides the first vertebrate model that reports intra-molecular tension and was utilised to identify changes in junctional organisation and VE-cadherin tension that occur as arteries mature and revealed molecular pathways that allow for this maturation to happen. In addition, the lab has established disease models for vascular malformations that are known to lead to neurological deficits and stroke. Modelling in zebrafish allows analyses of the initiating mechanisms of these vascular pathologies at unprecedented cellular and subcellular resolution.

Funding

Current funding

  • 2024 - 2027
    Discovering therapeutic vulnerabilities of circulating melanoma clusters
    United States Congressionally Directed Medical Research Programs - Melanoma Research Program
    Open grant
  • 2024 - 2027
    The impact of Hyaluronic Acid on growth factor signalling and angiogenesis (ARC Discovery Project administered by the University of Melbourne)
    University of Melbourne
    Open grant
  • 2024 - 2027
    Validating new druggable pathways for cerebral cavernous malformations
    NHMRC IDEAS Grants
    Open grant
  • 2023 - 2027
    Identifying genetic and lifestyle determinants of abdominal aortic calcification that predispose to cardiovascular disease (MRFF Cardiovascular Health Mission Grant administered by Edith Cowan Uni)
    Edith Cowan University
    Open grant
  • 2023 - 2026
    Adrenomedullin: a specific regulator of venous vessel integrity
    ARC Discovery Projects
    Open grant
  • 2022 - 2026
    Integrating innovative models of the brain microenvironment to identify new treatment strategies for medulloblastoma
    The Cure Starts Now Australia
    Open grant
  • 2022 - 2025
    Epithelial mechanics and the fate of cancer
    NHMRC IDEAS Grants
    Open grant
  • 2021 - 2025
    Blood Brain Barrier Program (Carrie Bickmore's Beanies 4 Brain Cancer Limited grant administered by The Walter and Eliza Hall Institute of Medical Research)
    Walter & Eliza Hall Institute of Medical Research (WEHI)
    Open grant

Past funding

  • 2023 - 2024
    Integrating innovative models of the brain microenvironment to identify new treatment strategies for medulloblastoma
    The Cure Starts Now Foundation
    Open grant
  • 2023
    IMB Stroke research led by Dr Anne Lagendijk
    Research Donation Generic
    Open grant
  • 2023
    Improving the accuracy of CCM modelling
    Be Brave for Life Foundation
    Open grant
  • 2020 - 2024
    Integrating innovative models of the brain microenvironment to identify new treatment strategies for medulloblastoma
    Brainchild Foundation
    Open grant
  • 2020
    Coupling the mechanical, signalling and transcriptional mechanisms that initiate pathogenesis of Cerebral Cavernous Malformation (NHMRC Project Grant administered by The University of Melbourne)
    University of Melbourne
    Open grant
  • 2020 - 2023
    Defining mechanisms behind the formation of hierarchical vascular networks
    ARC Discovery Projects
    Open grant
  • 2017 - 2020
    Coupling the mechanical, signalling and transcriptional mechanisms that initiate pathogenesis of Cerebral Cavernous Malformation
    NHMRC Project Grant
    Open grant
  • 2012 - 2015
    The contribution of cell-cell forces to vascular morphogenesis
    UQ Postdoctoral Research Fellowship
    Open grant

Supervision

Availability

Associate Professor Anne Lagendijk is:
Available for supervision

Before you email them, read our advice on how to contact a supervisor.

Available projects

  • Uncovering how caveolae regulate adhesion dynamics during blood vessel morphogenesis

    Caveolae are vesicular invaginations of the plasma membrane. We recently identified that caveolae are required for appropriate adhesion dynamics during blood vessel morphogenesis. This project will apply high end live imaging of zebrafish and 3D human micro-vessels to uncover the cellular mechanisms controlled by caveolae in this process.

Supervision history

Current supervision

  • Doctor Philosophy

    Unravelling the cellular mechanisms that drive Cerebral Cavernous Malformations

    Principal Advisor

    Other advisors: Professor Robert Parton

  • Doctor Philosophy

    Characterisation of a molecular pathway controlling cell-cell adhesion in veins but not arteries

    Principal Advisor

    Other advisors: Professor Alpha Yap

  • Doctor Philosophy

    How the interaction between blood flow forces and ECM controls vessel assembly and function during development

    Associate Advisor

    Other advisors: Dr Mel White

Completed supervision

Media

Enquiries

For media enquiries about Associate Professor Anne Lagendijk's areas of expertise, story ideas and help finding experts, contact our Media team:

communications@uq.edu.au