Skip to menu Skip to content Skip to footer
Dr Lachlan Rash
Dr

Lachlan Rash

Email: 
Phone: 
+61 7 336 52745

Overview

Background

Dr Rash completed his Honours (1996) and PhD (2001) on the pharmacological activity of spider venoms at the Department of Pharmacology, Monash University in the group of Professor Wayne Hodgson. After 18 months as an Assistant Lecturer at Monash Pharmacology, he was awarded an INSERM/NH&MRC Post-doctoral Fellowship to work in the group of Prof. Michel Lazdunski at the Institute of Molecular and Cellular Pharmacology in Antibes, France. It was here that he became involved in discovery and characterisation of venom peptides that act on acid-sensing ion channels, voltage-gated sodium channels and other pain related channels. Upon returning to Australia to the Institute for Molecular Bioscience (The University of Queensland), he established an ASIC research program and was awarded an NH&MRC project grant as CIA to investigate the molecular basis of the interaction of PcTx1 and APETx2 with ASIC1a and ASIC3 respectively. Dr Rash was appointed as senior lecturer in Pharmacology in the School of Biomedical Sciences in early 2016 where he continues his research on identifying novel bioactive peptides from animal venoms, unravelling the molecular basis for their specific channel interactions and their use as research tools and potential therapeutic lead molecules.

Availability

Dr Lachlan Rash is:
Available for supervision

Qualifications

  • Bachelor of Science, Monash University
  • Doctor of Philosophy, Monash University

Works

Search Professor Lachlan Rash’s works on UQ eSpace

78 works between 1998 and 2024

21 - 40 of 78 works

2021

Journal Article

Mambalgin-3 potentiates human acid-sensing ion channel 1b under mild to moderate acidosis: implications as an analgesic lead

Cristofori-Armstrong, Ben, Budusan, Elena and Rash, Lachlan D. (2021). Mambalgin-3 potentiates human acid-sensing ion channel 1b under mild to moderate acidosis: implications as an analgesic lead. Proceedings of the National Academy of Sciences, 118 (8) e2021581118, 1-3. doi: 10.1073/pnas.2021581118

Mambalgin-3 potentiates human acid-sensing ion channel 1b under mild to moderate acidosis: implications as an analgesic lead

2021

Other Outputs

Neuroprotective agents derived from spider venom peptides

King, Glenn , Rash, Lachlan Douglas, Chassagnon, Irene, Pineda Gonzalez, Sandy Steffany, Widdop, Robert Edward and Ireland, Claudia Ann (2021). Neuroprotective agents derived from spider venom peptides. 10881712.

Neuroprotective agents derived from spider venom peptides

2020

Journal Article

Acid-sensing (proton-gated) ion channels (ASICs) (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database

Kellenberger, Stephan and Rash, Lachlan D. (2020). Acid-sensing (proton-gated) ion channels (ASICs) (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide to Pharmacology CITE, 2020 (5). doi: 10.2218/gtopdb/f118/2020.5

Acid-sensing (proton-gated) ion channels (ASICs) (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database

2019

Journal Article

The diversity of venom: the importance of behavior and venom system morphology in understanding its ecology and evolution

Schendel, Vanessa, Rash, Lachlan D., Jenner, Ronald A. and Undheim, Eivind A. B. (2019). The diversity of venom: the importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins, 11 (11) 666, 666. doi: 10.3390/toxins11110666

The diversity of venom: the importance of behavior and venom system morphology in understanding its ecology and evolution

2019

Journal Article

The Concise Guide to Pharmacology 2019/20: Ion channels

Alexander, Stephen P.H., Mathie, Alistair, Peters, John A., Veale, Emma L., Striessnig, Jörg, Kelly, Eamonn, Armstrong, Jane F., Faccenda, Elena, Harding, Simon D., Pawson, Adam J., Sharman, Joanna L., Southan, Christopher, Davies, Jamie A., Aldrich, Richard W., Becirovic, Elvir, Biel, Martin, Catterall, William A., Conner, Alex C., Davies, Paul, Delling, Markus, Virgilio, Francesco Di, Falzoni, Simonetta, George, Chandy, Goldstein, Steve A.N., Grissmer, Stephan, Ha, Kotdaji, Hammelmann, Verena, Hanukoglu, Israel, Jarvis, Mike ... Zhu, Michael (2019). The Concise Guide to Pharmacology 2019/20: Ion channels. British Journal of Pharmacology, 176 (S1), S142-S228. doi: 10.1111/bph.14749

The Concise Guide to Pharmacology 2019/20: Ion channels

2019

Journal Article

Acid-sensing (proton-gated) ion channels (ASICs) (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

Kellenberger, Stephan, Rash, Lachlan D. and Schild, Laurent (2019). Acid-sensing (proton-gated) ion channels (ASICs) (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide to Pharmacology CITE, 2019 (4). doi: 10.2218/gtopdb/f118/2019.4

Acid-sensing (proton-gated) ion channels (ASICs) (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

2019

Journal Article

The modulation of acid-sensing ion channel 1 by PcTx1 is pH-, subtype- and species-dependent: importance of interactions at the channel subunit interface and potential for engineering selective analogues

Cristofori-Armstrong, Ben, Saez, Natalie J., Chassagnon, Irène R., King, Glenn F. and Rash, Lachlan D. (2019). The modulation of acid-sensing ion channel 1 by PcTx1 is pH-, subtype- and species-dependent: importance of interactions at the channel subunit interface and potential for engineering selective analogues. Biochemical Pharmacology, 163, 381-390. doi: 10.1016/j.bcp.2019.03.004

The modulation of acid-sensing ion channel 1 by PcTx1 is pH-, subtype- and species-dependent: importance of interactions at the channel subunit interface and potential for engineering selective analogues

2019

Journal Article

D. russelii venom mediates vasodilatation of resistance like arteries via activation of Kv and KCa Channels

Kakumanu, Rahini, Kuruppu, Sanjaya, Rash, Lachlan, Isbister, Geoffrey, Hodgson, Wayne and Kemp-Harper, Barbara (2019). D. russelii venom mediates vasodilatation of resistance like arteries via activation of Kv and KCa Channels. Toxins, 11 (4) 197, 197. doi: 10.3390/toxins11040197

D. russelii venom mediates vasodilatation of resistance like arteries via activation of Kv and KCa Channels

2019

Journal Article

Novel conorfamides from Conus austini venom modulate both nicotinic acetylcholine receptors and acid-sensing ion channels

Jin, Ai-hua, Cristofori-Armstrong, Ben, Rash, Lachlan D., Román González, Sergio Agustín, Espinosa, Roberto Arreguín, Lewis, Richard J., Alewood, Paul F. and Vetter, Irina (2019). Novel conorfamides from Conus austini venom modulate both nicotinic acetylcholine receptors and acid-sensing ion channels. Biochemical Pharmacology, 164, 342-348. doi: 10.1016/j.bcp.2019.04.025

Novel conorfamides from Conus austini venom modulate both nicotinic acetylcholine receptors and acid-sensing ion channels

2018

Journal Article

Defining the role of post-synaptic α-neurotoxins in paralysis due to snake envenoming in humans

Silva, Anjana, Cristofori-Armstrong, Ben, Rash, Lachlan D., Hodgson, Wayne C. and Isbister, Geoffrey K. (2018). Defining the role of post-synaptic α-neurotoxins in paralysis due to snake envenoming in humans. Cellular and Molecular Life Sciences, 75 (23), 4465-4478. doi: 10.1007/s00018-018-2893-x

Defining the role of post-synaptic α-neurotoxins in paralysis due to snake envenoming in humans

2018

Journal Article

Inhibition of acid-sensing ion channels by diminazene and APETx2 evoke partial and highly variable antihyperalgesia in a rat model of inflammatory pain

Lee, Jia Yu Peppermint, Saez, Natalie J., Cristofori-Armstrong, Ben, Anangi, Raveendra, King, Glenn F., Smith, Maree T. and Rash, Lachlan D. (2018). Inhibition of acid-sensing ion channels by diminazene and APETx2 evoke partial and highly variable antihyperalgesia in a rat model of inflammatory pain. British Journal of Pharmacology, 175 (12), 2204-2218. doi: 10.1111/bph.14089

Inhibition of acid-sensing ion channels by diminazene and APETx2 evoke partial and highly variable antihyperalgesia in a rat model of inflammatory pain

2017

Journal Article

The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells

Wilson, David, Boyle, Glen M, McIntyre, Lachlan, Nolan, Matthew J, Parsons, Peter G, Smith, Jennifer J, Tribolet, Leon, Loukas, Alex, Liddell, Michael J, Rash, Lachlan D and Daly, Norelle L (2017). The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells. Toxins, 9 (11) 346, 1-13. doi: 10.3390/toxins9110346

The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells

2017

Journal Article

Acid-sensing ion channel (ASIC) structure and function: insights from spider, snake and sea anemone venoms

Cristofori-Armstrong, Ben and Rash, Lachlan D. (2017). Acid-sensing ion channel (ASIC) structure and function: insights from spider, snake and sea anemone venoms. Neuropharmacology, 127, 173-184. doi: 10.1016/j.neuropharm.2017.04.042

Acid-sensing ion channel (ASIC) structure and function: insights from spider, snake and sea anemone venoms

2017

Journal Article

The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity.

Wingerd, Joshua S., Mozar, Christine A., Ussing, Christine A., Murali, Swetha S., Chin, Yanni K. -Y., Cristofori-Armstrong, Ben, Durek, Thomas, Gilchrist, John, Vaughan, Christopher W., Bosmans, Frank, Adams, David J., Lewis, Richard J., Alewood, Paul F., Mobli, Mehdi, Christie, Macdonald J. and Rash, Lachlan D. (2017). The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity.. Scientific Reports, 7 (1) 974, 974. doi: 10.1038/s41598-017-01129-0

The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity.

2017

Journal Article

Modulation of ion channels by cysteine-rich peptides: from sequence to structure

Mobli, Mehdi, Undheim, Eivind A.B. and Rash, Lachlan D. (2017). Modulation of ion channels by cysteine-rich peptides: from sequence to structure. Advances in Pharmacology, 79, 199-223. doi: 10.1016/bs.apha.2017.03.001

Modulation of ion channels by cysteine-rich peptides: from sequence to structure

2017

Journal Article

Discovery and molecular interaction studies of a highly stable, tarantula peptide modulator of acid-sensing ion channel 1

Er, Sing Yan, Cristofori-Armstrong, Ben, Escoubas, Pierre and Rash, Lachlan D. (2017). Discovery and molecular interaction studies of a highly stable, tarantula peptide modulator of acid-sensing ion channel 1. Neuropharmacology, 127, 185-195. doi: 10.1016/j.neuropharm.2017.03.020

Discovery and molecular interaction studies of a highly stable, tarantula peptide modulator of acid-sensing ion channel 1

2017

Journal Article

The structure, dynamics and selectivity profile of a NaV 1.7 potency-optimised huwentoxin-IV variant

Rahnama, Sassan, Deuis, Jennifer R., Cardoso, Fernanda C., Ramanujam, Venkatraman, Lewis, Richard J., Rash, Lachlan D., King, Glenn F., Vetter, Irina and Mobli, Mehdi (2017). The structure, dynamics and selectivity profile of a NaV 1.7 potency-optimised huwentoxin-IV variant. PLoS One, 12 (3) e0173551, e0173551. doi: 10.1371/journal.pone.0173551

The structure, dynamics and selectivity profile of a NaV 1.7 potency-optimised huwentoxin-IV variant

2017

Journal Article

Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a

Chassagnon, Irene R., McCarthy, Claudia A., Chin, Yanni K.-Y., Pineda, Sandy S., Keramidas, Angelo, Mobli, Mehdi, Pham, Vi, De Silva, T. Michael, Lynch, Joseph W., Widdop, Robert E., Rash, Lachlan D. and King, Glenn F. (2017). Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proceedings from the National Academy of Sciences of the United States of America, 114 (14), 3750-3755. doi: 10.1073/pnas.1614728114

Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a

2017

Book Chapter

Acid-sensing ion channel pharmacology, past, present, and future …

Rash, Lachlan D. (2017). Acid-sensing ion channel pharmacology, past, present, and future …. Ion Channels DownUnder. (pp. 35-66) edited by Dominic P. Geraghty and Lachlan D. Rash. Cambridge, MA, United States: Academic Press. doi: 10.1016/bs.apha.2017.02.001

Acid-sensing ion channel pharmacology, past, present, and future …

2017

Book Chapter

Preface

Geraghty, Dominic P. and Rash, Lachlan D. (2017). Preface. Ion Channels DownUnder. (pp. xi-xii) edited by Dominic P. Geraghty and Lachlan D. Rash. Cambridge, MA, United States: Academic Press. doi: 10.1016/S1054-3589(17)30052-2

Preface

Funding

Current funding

  • 2023 - 2026
    Target validation of acid-sensing ion channel inhibitors to stop disease progression and manage pain in MS
    National Multiple Sclerosis Society-US
    Open grant

Past funding

  • 2022 - 2024
    Developing novel acid-sensing ion channel inhibitors as neuroprotective leads and diagnostic agents for multiple sclerosis
    Multiple Sclerosis Research Australia - Targeted Grant - Neurodegeneration
    Open grant
  • 2020 - 2022
    Neuroprotective role of novel acid-sensing ion channel inhibitor in Multiple sclerosis (MS) disease
    Multiple Sclerosis Research Australia
    Open grant
  • 2020
    Electrophysiology Platform for Ion-channel Characterisation
    ARC Linkage Infrastructure, Equipment and Facilities
    Open grant
  • 2019 - 2022
    Accessing structurally elusive states of sodium channels as novel analgesic targets
    NHMRC Project Grant
    Open grant
  • 2019 - 2021
    Development of a first-in-class neuroprotective drug for protecting the brain after stroke
    NHMRC Development Grant
    Open grant
  • 2018
    Multichannel peptide synthesiser to accelerate UQ's biodiscovery pipeline and peptide drug development programs
    UQ Major Equipment and Infrastructure
    Open grant
  • 2017 - 2018
    A Pharmacology Screening Facility to Accelerate Drug Discovery and Development
    UQ Major Equipment and Infrastructure
    Open grant
  • 2016
    Patch-clamp electrophysiology platform for drug and insecticide discovery
    UQ Major Equipment and Infrastructure
    Open grant
  • 2014 - 2017
    Developing subtype-selective blockers of acid-sensing ion channels for treating peripheral pain
    NHMRC Project Grant
    Open grant
  • 2011 - 2013
    Development of potent and selective blockers of acid sensing ion channels for the treatment of pain
    NHMRC Project Grant
    Open grant
  • 2011 - 2012
    Spider toxins as potential drug leads in breast cancer
    National Breast Cancer Foundation Novel Concept Award
    Open grant
  • 2008 - 2010
    Examining the role ASIC channels in pain through the development of subtype-specific ASIC channel modulators
    NHMRC Project Grant
    Open grant
  • 2005 - 2007
    INSERM FELLOWSHIP: Structural characterisation and pharmacology of ion channel toxins from spider venoms
    NHMRC Training (Postdoctoral) Fellowship
    Open grant

Supervision

Availability

Dr Lachlan Rash is:
Available for supervision

Before you email them, read our advice on how to contact a supervisor.

Supervision history

Current supervision

  • Doctor Philosophy

    Charaterisation of ion channels as pattern recognition receptors for acidosis and potential anti-inflammatory targets.

    Principal Advisor

    Other advisors: Dr Neville Butcher, Dr Nemat Khan

  • Doctor Philosophy

    Developing novel acid-sensing ion channel inhibitors as neuroprotective leads and diagnostic agents for multiple sclerosis.

    Principal Advisor

    Other advisors: Dr Neville Butcher, Dr Nemat Khan

  • Doctor Philosophy

    Developing novel acid-sensing ion channel inhibitors as neuroprotective leads and diagnostic agents for multiple sclerosis.

    Principal Advisor

    Other advisors: Dr Neville Butcher, Dr Nemat Khan

  • Doctor Philosophy

    Understanding the role acid-sensing ion channels in disease progression and pain associated with neuroinflammatory conditions.

    Principal Advisor

    Other advisors: Emeritus Professor Maree Smith, Dr Neville Butcher, Dr Nemat Khan

  • Doctor Philosophy

    The ASIC thumb domain as a channel proxy for identification of drug leads for the treatment of ischemic conditions

    Associate Advisor

    Other advisors: Professor Mehdi Mobli

Completed supervision

Media

Enquiries

For media enquiries about Dr Lachlan Rash's areas of expertise, story ideas and help finding experts, contact our Media team:

communications@uq.edu.au