Skip to menu Skip to content Skip to footer
Professor Pankaj Sah
Professor

Pankaj Sah

Email: 
Phone: 
+61 7 334 66311

Overview

Background

Professor Pankaj Sah is Director of the Queensland Brain Institute (QBI) at The University of Queensland (UQ). He is renowned for his work in understanding the neural circuitry of the amygdala, an area of the brain that plays a central role in learning and memory formation. Dysfunction of the amygdala leads to a host of anxiety-related disorders. His laboratory uses a combination of molecular tools, electrophysiology, anatomical reconstruction, calcium imaging and behavioural studies to examine the electrophysiological signatures of different brain regions and their impact on disease. Recently, his laboratory has been working with patients undergoing electrode implantation for deep brain stimulation, which is used to treat a variety of disorders such as Parkinson's disease, Tourette's syndrome and essential tremor. Professor Sah trained in medicine at The University of New South Wales and, after completing his internship, gained a PhD from the Australian National University. Following postdoctoral work at the University of California, San Francisco, and UQ, he established his own laboratory at the University of Newcastle in 1994. He then joined the John Curtin School of Medical Research at the Australian National University as a group leader in 1997. He was recruited to QBI as a founding member in 2003, and has been Director since July 2015. Professor Sah has published over 110 papers in international peer-reviewed journals. He is also the Editor-in-Chief of the Nature Partner Journal npj Science of Learning, the first journal to bring together the findings of neuroscientists, psychologists, and education researchers to understand how the brain learns.

Availability

Professor Pankaj Sah is:
Not available for supervision
Media expert

Fields of research

Qualifications

  • Bachelor of Medicine, University of New South Wales

Research impacts

Prof Sah's major interest has been in understanding the neural circuits that underpin learning and memory formation working on two regions that have well defined roles in learning: the hippocampus and amygdala. He have made major contributions to both these areas and pioneered whole-cell recordings in acute brain slices and provided the first biophysical characterisation of excitatory glutamatergic synapses in the mammalian brain (e.g. Hestrin et. al. 1990, J. Physiol. 422:203; Sah, et al. 1989 Science, 246:815). These synapses are involved in all activity in the central nervous system and our results are cited in major neuroscience textbooks (e.g. Kandel and Schwartz, Principles of Neural Science). Although the hippocampus plays a role in many forms of learning, linking hippocampal activity to specific behaviours has proven difficult. He therefore decided to study the amygdala, a region of the brain well known to play a key role in a very specific form of learning: fear conditioning. His laboratory has been a leader in studying the amygdala and provided the first characterisation of the properties of neurons in this structure (e.g. Faber et al., 2001 J. Neurophysiol. 85:714; Faber & Sah 2002, J. Neurosci. 22:1618). revealing a number of novel and unexpected properties of central synapses and changed thinking about the functional roles of different synapses. For example, it was thought that learning only engaged synaptic plasticity at excitatory synapses on pyramidal neurons. His group showed that in the amygdala a unique form of plasticity also occurs in interneurons (Mahanty & Sah 1998, Nature 394:683) and have recently shown that this plasticity is restricted to a single class of interneuron (Polepalli et al. 2010, J Neurosci. 30:14619). Much of his group's work in this area formed the basis of an influential review (Sah et al. 2003, Physiological Reviews 83: 803). In 2005, my laboratory also discovered that small conductance calcium-activated potassium channels, known to set the discharge properties of central neurons, are also present at excitatory synapses where their modulation plays a key role in setting the strength of synaptic connections and in synaptic plasticity (Faber et al. 2005, Nature Neurosci 8:635). Moreover, these channels are modulated by the hormone noradrenaline, explaining how memory formation may be affected by stressful stimuli (Faber et al. 2008, J Neurosci. 28:10803). Finally, interneurons in the adult brain were though to only be inhibitory. The Sah laboratory demonstrated that a particular type of interneuron in the amygdala is excitatory (Woodruff et al. 2006, J. Neurosci. 26:11881) overturning a long-standing dogma in the field. Interneurons in the amygdala have long been known to play an important role in amygdala-dependent learning. These effects were thought to result from the inhibitory actions of interneurons on the output neurons of the amygdala. His group's results are showing that these cells play a central and unexpected role in information processing and are redefining our understanding of the function that interneurons play in intrinsic circuits in the amygdala.

Works

Search Professor Pankaj Sah’s works on UQ eSpace

207 works between 1982 and 2023

81 - 100 of 207 works

2014

Journal Article

Dendritic spine heterogeneity and calcium dynamics in basolateral amygdala principal neurons

Power, John M. and Sah, Pankaj P. (2014). Dendritic spine heterogeneity and calcium dynamics in basolateral amygdala principal neurons. Journal of Neurophysiology, 112 (7), 1616-1627. doi: 10.1152/jn.00770.2013

Dendritic spine heterogeneity and calcium dynamics in basolateral amygdala principal neurons

2014

Journal Article

Balanced interhemispheric cortical activity is required for correct targeting of the corpus callosum

Suarez, Rodrigo, Fenlon, Laura R., Marek, Roger, Avitan, Lilach A, Sah, Pankaj, Goodhill, Geoffrey J. and Richards, Linda J. (2014). Balanced interhemispheric cortical activity is required for correct targeting of the corpus callosum. Neuron, 82 (6), 1289-1298. doi: 10.1016/j.neuron.2014.04.040

Balanced interhemispheric cortical activity is required for correct targeting of the corpus callosum

2014

Journal Article

Emotional regulation of pain: the role of noradrenaline in the amygdala

Strobel, Cornelia, Hunt, Sarah, Sullivan, Robert, Sun, Jian and Sah, Pankaj (2014). Emotional regulation of pain: the role of noradrenaline in the amygdala. Science China Life Sciences, 57 (4), 384-390. doi: 10.1007/s11427-014-4638-x

Emotional regulation of pain: the role of noradrenaline in the amygdala

2014

Journal Article

GABAa receptor α and γ subunits shape synaptic currents via different mechanisms

Dixon, Christine, Sah, Pankaj, Lynch, Joseph W. and Keramidas, Angelo (2014). GABAa receptor α and γ subunits shape synaptic currents via different mechanisms. Journal of Biological Chemistry, 289 (9), 5399-5411. doi: 10.1074/jbc.M113.514695

GABAa receptor α and γ subunits shape synaptic currents via different mechanisms

2014

Journal Article

Rodent scope: A user-configurable digital wireless telemetry system for freely behaving animals

Ball, David, Kliese, Russell, Windels, Francois, Nolan, Christopher, Stratton, Peter, Sah, Panjkaj and Wiles, Janet (2014). Rodent scope: A user-configurable digital wireless telemetry system for freely behaving animals. PLoS One, 9 (2) e89949, e89949.1-e89949.10. doi: 10.1371/journal.pone.0089949

Rodent scope: A user-configurable digital wireless telemetry system for freely behaving animals

2014

Journal Article

Mechanisms of heterosynaptic metaplasticity

Hulme, Sarah R., Jones, Owen D., Raymond, Clarke R., Sah, Pankaj and Abraham, Wickliffe C. (2014). Mechanisms of heterosynaptic metaplasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 369 (1633) 20130148, 1633.1-1633.8. doi: 10.1098/rstb.2013.0148

Mechanisms of heterosynaptic metaplasticity

2014

Conference Publication

Auditory stimulation modulates amygdala network dynamics

Windels, François, Stratton, Peter and Sah, Pankaj (2014). Auditory stimulation modulates amygdala network dynamics. The Twenty Third Annual Computational Neuroscience Meeting: CNS*2014, Québec City, Canada, 26-31 July, 2014. London, United Kingdom: BioMed Central. doi: 10.1186/1471-2202-15-s1-p52

Auditory stimulation modulates amygdala network dynamics

2014

Journal Article

Functional properties and projections of neurons in the medial amygdala

Keshavarzi, Sepideh, Sullivan, Robert K. P., Ianno, Damian J. and Sah, Pankaj (2014). Functional properties and projections of neurons in the medial amygdala. Journal of Neuroscience, 34 (26), 8699-8715. doi: 10.1523/JNEUROSCI.1176-14.2014

Functional properties and projections of neurons in the medial amygdala

2014

Journal Article

Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus

Tattersall, Timothy L., Stratton, Peter G., Coyne, Terry J., Cook, Raymond, Silberstein, Paul, Silburn, Peter A., Windels, Francois and Sah, Pankaj (2014). Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus. Nature Neuroscience, 17 (3), 449-454. doi: 10.1038/nn.3642

Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus

2013

Journal Article

The amygdala and medial prefrontal cortex: partners in the fear circuit

Marek, Roger, Strobel, Cornelia, Bredy, Timothy W. and Sah, Pankaj (2013). The amygdala and medial prefrontal cortex: partners in the fear circuit. Journal of Physiology, 591 (10), 2381-2391. doi: 10.1113/jphysiol.2012.248575

The amygdala and medial prefrontal cortex: partners in the fear circuit

2013

Journal Article

Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits

Delaney, Andrew J., Sedlak, Petra L., Autuori, Eleonora, Power, John M. and Sah, Pankaj (2013). Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits. Journal of Neurophysiology, 109 (5), 1391-1402. doi: 10.1152/jn.00176.2012

Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits

2013

Journal Article

Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation

Hamlin, Adam S., Windels, Francois, Boskovic, Zoran, Sah, Pankaj and Coulson, Elizabeth J. (2013). Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation. PLoS ONE, 8 (1) e53472, e53472.1-e53472.9. doi: 10.1371/journal.pone.0053472

Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation

2012

Journal Article

Properties of doublecortin expressing neurons in the adult mouse dentate gyrus

Spampanato, Jay, Sullivan, Robert K., Turpin, Fabrice R., Bartlett, Perry F. and Sah, Pankaj (2012). Properties of doublecortin expressing neurons in the adult mouse dentate gyrus. PLoS One, 7 (9) e41029, e41029-1-e41029-12. doi: 10.1371/journal.pone.0041029

Properties of doublecortin expressing neurons in the adult mouse dentate gyrus

2012

Journal Article

p300/CBP-associated factor selectively regulates the extinction of conditioned fear

Wei, Wei, Coelho, Carlos M., Li, Xiang, Marek, Roger, Yan, Shanzhi, Anderson, Shawn, Meyers, David, Mukherjee, Chandrani, Sbardella, Gianluca, Castellano, Sabrina, Milite, Ciro, Rotili, Dante, Mai, Antonello, Cole, Philip A., Sah, Pankaj, Kobor, Michael S. and Bredy, Timothy W. (2012). p300/CBP-associated factor selectively regulates the extinction of conditioned fear. Journal of Neuroscience, 32 (35), 11930-11941. doi: 10.1523/JNEUROSCI.0178-12.2012

p300/CBP-associated factor selectively regulates the extinction of conditioned fear

2012

Journal Article

Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination

Oluich, Laura-Jane, Stratton, Jo Anne S., Xing, Yao Lulu, Ng, Sze Woei, Cate, Holly S., Sah, Pankaj, Windels, Francois, Kilpatrick, Trevor J. and Merson, Tobias D. (2012). Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. The Journal of Neuroscience, 32 (24), 8317-8330. doi: 10.1523/JNEUROSCI.1053-12.2012

Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination

2012

Journal Article

Action potential waveform variability limits multi-unit separation in freely behaving rats

Stratton, Peter, Cheung, Allen, Wiles, Janet H., Kiyatkin, E., Sah, Pankaj and Windels, Francois (2012). Action potential waveform variability limits multi-unit separation in freely behaving rats. PLoS One, 7 (6) e38482, e38482.1-e38482.16. doi: 10.1371/journal.pone.0038482

Action potential waveform variability limits multi-unit separation in freely behaving rats

2012

Journal Article

An introduction to a symposium dedicated to the scientific achievements of Roger Nicoll

Jahr, Craig, Perkel, David and Sah, Pankaj (2012). An introduction to a symposium dedicated to the scientific achievements of Roger Nicoll. Journal of Physiology, 590 (10), 2201-2202. doi: 10.1113/jphysiol.2012.230896

An introduction to a symposium dedicated to the scientific achievements of Roger Nicoll

2012

Journal Article

Ifenprodil reduces excitatory synaptic transmission by blocking presynaptic P/Q type calcium channels

Delaney, Andrew J., Power, John M. and Sah, Pankaj (2012). Ifenprodil reduces excitatory synaptic transmission by blocking presynaptic P/Q type calcium channels. Journal of Neurophysiology, 107 (6), 1571-1575. doi: 10.1152/jn.01066.2011

Ifenprodil reduces excitatory synaptic transmission by blocking presynaptic P/Q type calcium channels

2012

Journal Article

Small-conductance Ca(2+)-activated K(+) channels: form and function

Adelman, John P., Maylie, James and Sah, Pankaj (2012). Small-conductance Ca(2+)-activated K(+) channels: form and function. Annual Review of Physiology, 74, 245-269. doi: 10.1146/annurev-physiol-020911-153336

Small-conductance Ca(2+)-activated K(+) channels: form and function

2012

Conference Publication

Excitatory and inhibitory circuits in the basolateral amygdala

Sah, Pankaj (2012). Excitatory and inhibitory circuits in the basolateral amygdala. 19th Biennial Meeting of the International Society for Developmental Neuroscience (ISDN), Mumbai India, 11-14 January 2012. Oxford, United Kingdom: Pergamon. doi: 10.1016/j.ijdevneu.2012.10.085

Excitatory and inhibitory circuits in the basolateral amygdala

Funding

Current funding

  • 2023 - 2024
    Intelligent Closed Loop Neuromodulation
    Bionics Queensland Challenge
    Open grant
  • 2023 - 2026
    Neural circuits that control movement: from mice to humans
    NHMRC IDEAS Grants
    Open grant
  • 2023 - 2027
    Selective Modulation Of Brain Circuits In Obsessive-Compulsive Disorder (NHMRC Ideas Grant administered by QIMR)
    QIMR Berghofer Medical Research Institute
    Open grant
  • 2022 - 2026
    Network activity and the role of NMDA receptors in associative learning
    ARC Discovery Projects
    Open grant
  • 2021 - 2025
    Rotary International District Human Brain Global Grant PhD Scholarship
    Rotary International District 9640 Ltd
    Open grant
  • 2018 - 2027
    Niels Bohr Professorship Research Program
    Research Donation Generic
    Open grant
  • 2017 - 2028
    Brazil Family Program for Neurology (MND)
    Anchorfield Pty Ltd
    Open grant
  • 2017 - 2028
    Brazil Family Program for Neurology (Stroke)
    Anchorfield Pty Ltd
    Open grant

Past funding

  • 2023 - 2024
    Whole-head optically-pumped room-temperature magnetoencephalography (OPMEG) (ARC LIEF administered by The University of Melbourne)
    University of Melbourne
    Open grant
  • 2019
    Camera and software upgrades for microscopy
    UQ Major Equipment and Infrastructure
    Open grant
  • 2019
    Histology and Advanced Microscopy Research Facility upgrade
    UQ Major Equipment and Infrastructure
    Open grant
  • 2019 - 2023
    Unravelling amygdala-hippocampus neural circuitry of anxiety: Role of adult-born neurons
    NHMRC Project Grant
    Open grant
  • 2018 - 2024
    Translational Ultrasound for Alzheimer's disease treatment
    Anchorfield Pty Ltd
    Open grant
  • 2018 - 2020
    Brain connectome: from synapse, large-scale network to behaviour
    ARC Discovery Projects
    Open grant
  • 2018
    A specialised surgical and behavioural facility for longitudinal, multimodal examination of the rodent brain
    UQ Major Equipment and Infrastructure
    Open grant
  • 2017 - 2020
    Human Brain Global Grant PhD Scholarship
    Human Brain Global Grant
    Open grant
  • 2017 - 2020
    Neural circuits that mediate fear extinction
    NHMRC Project Grant
    Open grant
  • 2017
    Voltage-gated calcium channels and vitamin D: investigating the convergent links between risk factors for schizophrenia
    RL Cooper Medical Research Foundation Limited
    Open grant
  • 2016 - 2019
    Auditory processing in the amygdala
    NHMRC Project Grant
    Open grant
  • 2016 - 2020
    Voltage gated calcium channels and vitamin D: exploring the convergent links between risk factors for schizophrenia
    NHMRC Project Grant
    Open grant
  • 2015
    Computerised stereotaxic stages and rapid tissue processor for enhanced fixation and immunolabelling
    NHMRC Equipment Grant
    Open grant
  • 2015 - 2020
    NHMRC Research Fellowship: Neural circuits that underpin fear and anxiety
    NHMRC Research Fellowship
    Open grant
  • 2014 - 2021
    ARC Centre of Excellence for Integrative Brain Function (Monash lead institution)
    Monash University
    Open grant
  • 2014 - 2018
    Function and physiological role of inhibitory circuits in the amygdala
    NHMRC Project Grant
    Open grant
  • 2014 - 2017
    Neurogenesis in the amygdala and hippocampus: a role in learnt fear?
    NHMRC Project Grant
    Open grant
  • 2013 - 2019
    The Science of Learning Research Centre
    ARC Special Research Initiative for a Science of Learning Research Centre
    Open grant
  • 2013
    Neural circuits that mediate fear conditioning and extinction
    ARC Discovery Projects
    Open grant
  • 2013 - 2021
    Neural circuits that mediate learning and memory formation in the mammalian brain
    Vice-Chancellor's Senior Research Fellowship
    Open grant
  • 2012 - 2014
    Understanding the biology of the learning cycle: study, testing, and feedback
    UQ FirstLink Scheme
    Open grant
  • 2012
    Neuronal circuits underlying behaviour
    UQ Major Equipment and Infrastructure
    Open grant
  • 2012 - 2014
    New tools to activate and silence neural circuits
    ARC Linkage Projects
    Open grant
  • 2012 - 2013
    Scanning electron microscope to house 3-Dimensional Sectioning Facility
    UQ Major Equipment and Infrastructure
    Open grant
  • 2011
    Advanced behavioural facility
    UQ Major Equipment and Infrastructure
    Open grant
  • 2011
    Large scale automated electron microscopic sectioning facility
    UQ Major Equipment and Infrastructure
    Open grant
  • 2011 - 2015
    Neural correlates of fear conditioning and extinction
    NHMRC Project Grant
    Open grant
  • 2010 - 2012
    Development of an integrated technology platform for neural cell surface marker discovery and characterisation
    UQ Collaboration and Industry Engagement Fund
    Open grant
  • 2009
    AKTA Explorer Fast Protein Liquid Chromatography Equipment
    UQ Institute Co-Funding
    Open grant
  • 2009 - 2012
    Development and Refinement of Neural Connections in the Adult Brain in Health and Disease
    NHMRC Program Grant
    Open grant
  • 2009 - 2013
    Integration and function of newborn neurons in the adult amygdala
    NHMRC Project Grant
    Open grant
  • 2009 - 2011
    Modulation of Calcium Signalling by Acetylcholine in the Basolateral Amygdala
    NHMRC Project Grant
    Open grant
  • 2009 - 2013
    Regulation and function of a latent hippocampal precursor population
    NHMRC Project Grant
    Open grant
  • 2009
    Zeiss LSM 710 confocal laser scanning microscope
    UQ Institute Co-Funding
    Open grant
  • 2008 - 2009
    Facility for analysing behaviour, learning and motor skills in animal models
    ARC Linkage Infrastructure, Equipment and Facilities
    Open grant
  • 2008 - 2012
    Mechanisms of fear learning and extinction in the mammalian brain
    ARC Discovery Projects
    Open grant
  • 2008 - 2010
    Modulation and trafficking of SK channels in the lateral amygdala
    NHMRC Project Grant
    Open grant
  • 2008 - 2010
    NMDA receptor function in the amygdala
    NHMRC Project Grant
    Open grant
  • 2008 - 2011
    Regulation of p75 death signalling: how neurotransmitter- and neurotrophic- signals determine cell survival
    NHMRC Project Grant
    Open grant
  • 2007 - 2008
    Automated Patch Clamp System
    ARC Linkage Infrastructure, Equipment and Facilities
    Open grant
  • 2007
    Behavioural Facility
    NHMRC Equipment Grant
    Open grant
  • 2007 - 2009
    Therapeutic potential of glycine receptors in pain sensory pathways
    NHMRC Project Grant
    Open grant
  • 2006 - 2011
    Thinking Systems: Navigating Through Real and Conceptual Spaces
    ARC Special Initiative
    Open grant
  • 2006
    Ultraviolet Laser for targeted uncaging
    NHMRC Equipment Grant
    Open grant
  • 2005
    NHMRC_Equipment Grant = Zeiss Cryo-Star cryostat
    NHMRC Equipment Grant
    Open grant
  • 2004
    The Centre for Advanced Light Microscopy: Equipment for in-vivo multiphoton microscopy and high-throughput confocal microscopy
    ARC Linkage Infrastructure, Equipment and Facilities
    Open grant
  • 2004 - 2006
    Characterisation of monoaminergic transmission in Central Amygdala
    ARC Discovery Projects
    Open grant
  • 2004 - 2005
    NHMRC_Equipment Grant_BACS_QBI/SBMS
    NHMRC Equipment Grant
    Open grant
  • 2003
    Molecular and physiological identification of a novel gaba receptor in the amygdala
    Australian National University
    Open grant
  • 2003
    Excitatory synaptic circuitry and plasticity in the amygdala
    NHMRC Project Grant - Standard
    Open grant

Supervision

Availability

Professor Pankaj Sah is:
Not available for supervision

Supervision history

Current supervision

  • Doctor Philosophy

    The economic and social impact of Deep Brain Stimulation

    Principal Advisor

    Other advisors: Professor Brenda Gannon

  • Doctor Philosophy

    Neural circuits that drive movement and gait

    Principal Advisor

    Other advisors: Dr Roger Marek, Dr Margreet Ridder

  • Doctor Philosophy

    Understanding neural Basis of Resting-State Network Using Simultaneous Calcium Recording and Functional Magnetic Resonance Imaging

    Associate Advisor

    Other advisors: Associate Professor Kai-Hsiang Chuang

  • Master Philosophy

    Predictive Biobehavioural Markers of Deep Brain Stimulation Efficacy

    Associate Advisor

    Other advisors: Associate Professor Susannah Tye

Completed supervision

Media

Enquiries

Contact Professor Pankaj Sah directly for media enquiries about:

  • Brain and memory
  • Brain and processing of emotion
  • Brain physiology
  • Central nervous system receptors
  • Emotion - processing in brain
  • Learning and memory formation
  • Memory formation and learning
  • Nervous system

Need help?

For help with finding experts, story ideas and media enquiries, contact our Media team:

communications@uq.edu.au