
Overview
Background
Mohsen Yahyaei is an expert in modelling, optimising, and controlling mineral processing circuits using novel approaches and tools. He is currently the Director of the Julius Kruttschnitt Mineral Research Centre (JKMRC) and Program Leader for Future Autonomous Systems and Technologies (FAST) at the University of Queensland’s Sustainable Minerals Institute.
Mohsen completed his undergraduate studies in Mine Exploration and earned a Master’s degree in Mineral Processing in 2002. His master’s thesis focused on applying column flotation in the Sarcheshmeh Copper Complex, the largest copper mine in the Middle East. After his Master’s, he worked at the R&D centre of the Zarand coal washing plant in Iran for two years before becoming the plant manager. In 2007, he returned to the University of Kerman to pursue a PhD, investigating the effect of liner wear on charge motion and power draw of SAG mills, which he completed in 2010.
Since joining JKMRC in 2011, Mohsen has conducted extensive applied research and successfully delivered numerous industry-funded projects. As a comminution specialist, he is dedicated to implementing fundamental understandings in his research to offer practical solutions to the minerals industry and educate engineers and researchers with problem-solving skills for future resource industry challenges. His research focuses on optimising mineral processing techniques to enhance efficiency and sustainability, with a strong emphasis on practical application. Mohsen's research extends to advanced process control, including the development of soft sensors and model-predictive control solutions. His work aims to improve the precision and reliability of industrial processes, contributing significantly to the field of mineral processing.
Availability
- Professor Mohsen Yahyaei is:
- Available for supervision
- Media expert
Fields of research
Qualifications
- Doctoral Diploma of Engineering, Shahid Bahonar University of Kerman
- Masters (Coursework) of Business Administration, The University of Queensland
Research interests
-
Process Autonomy
Enabling tools and technologies to enable trusted autonomous systems and technologies for mineral processing plants.
-
Dynamic modelling for process control and optimisation
New approach in implementing dynamic modelling of mineral processing circuits for developing process control strategies and accessing process performance
-
Study surface breakage of rock particles
Measuring surface breakage of rocks under different loading mechanisms to inform mechanistic breakage models
-
Mechanistic approach in liner wear modelling
Incorporating factors affecting liner wear in the structure of a mechanistic wear model
Research impacts
With a successful background in industry-based work, my contributions to the development of soft sensors for comminution and classification circuits have delivered significant value to the industry. One such contribution is the JK Mill FIT, a soft sensor for real-time monitoring of tumbling mill content. This soft sensor has been installed in more than 20 operations globally and has had a significant impact on process stability, enhancing the utilization of grinding mills and reducing operational costs. Another solution I have been involved in developing is the JK Dynamic Stockpile/Bin model. This unique model offers significant opportunities for real-time process prediction and automation of mineral processing circuits. It enables ore tracking from the ground to the processing plant, enhancing mine-to-mill optimization and geometallurgical modelling. This solution has been validated with industrial data and implemented in several industrial applications. The range of new soft sensors and dynamic models that are in the pipeline of my research will transform the future of process control in mineral processing circuits.
As director of JKMRC, a world-leading research centre in mineral processing, I have contributed to the research direction of the centre, pivoting it towards developing and delivering transformational processing solutions to the resources industry. Our applied research and practical solutions have significantly contributed to the sustainable development of society through the supply of transitional mineral resources with minimal environmental and social impacts. Our research focuses on aspects of the process such as water utilization, mine waste reduction or transformation into by-products, energy efficiency, enabling the transition to green energy sources, and minimizing process waste, all of which are linked to sustainable development goals.
Works
Search Professor Mohsen Yahyaei’s works on UQ eSpace
2023
Journal Article
Digital twins in the minerals industry – a comprehensive review
Qu, Juncong, Kizil, Mehmet S., Yahyaei, Mohsen and Knights, Peter F. (2023). Digital twins in the minerals industry – a comprehensive review. Mining Technology, 132 (4), 267-289. doi: 10.1080/25726668.2023.2257479
2023
Other Outputs
SAG Advanced Process Control review: Final report for Dugald River Mine
Yahyaei, Mohsen, Hilden, Marko, Forbes, Gordon and Meng, Yuhao (2023). SAG Advanced Process Control review: Final report for Dugald River Mine. Brisbane, Australia: The University of Queensland, Julius Kruttschnitt Mineral Research Centre (JKMRC).
2023
Journal Article
A 3D cellular automata ore stockpile model – Part 2: Simulation and industrial validation of dynamic discharging and trajectory segregation mechanisms
Ye, Z., Hilden, M. M. and Yahyaei, M. (2023). A 3D cellular automata ore stockpile model – Part 2: Simulation and industrial validation of dynamic discharging and trajectory segregation mechanisms. Minerals Engineering, 200 108156, 108156. doi: 10.1016/j.mineng.2023.108156
2023
Conference Publication
Data analytics and modelling for trustable process automation
Yahyaei, Mohsen, Forbes, Gordon and Hilden, Marko (2023). Data analytics and modelling for trustable process automation. 10th International Congress on Automation, Robotics and Digitalization in Mining, Santiago, Chile, 9-11 August 2023.
2023
Conference Publication
Economic analyses (EA) and life cycle assessment (LCA) on repurposing of mine waste via geopolymerisation technology
Amari, Sama, Darestani, Mariam, Muhammad Abrar Ilyas, Hafiz and Yahyaei, Mohsen (2023). Economic analyses (EA) and life cycle assessment (LCA) on repurposing of mine waste via geopolymerisation technology. Life of Mine Conference 2023, Brisbane, QLD Australia, 2-4 August 2023.
2023
Journal Article
Foundation of a framework for evaluating the impact of mining technological innovation on a company's market value
Mugebe, P., Kizil, M.S., Yahyaei, M. and Low, R. (2023). Foundation of a framework for evaluating the impact of mining technological innovation on a company's market value. Resources Policy, 85 103913, 103913. doi: 10.1016/j.resourpol.2023.103913
2023
Conference Publication
Application of a cellular automata modelling to dynamic simulation of industrial stockpiles and bins
Hilden, Marko, Ye, Ziming and M. Yahyaei (2023). Application of a cellular automata modelling to dynamic simulation of industrial stockpiles and bins. The 14th International Conference on Bulk Materials Storage, Handling and Transportation, Wollongong, NSW Australia, 11-13 July 2023. Engineers Australia.
2023
Journal Article
Decarbonisation to drive dramatic increase in mining waste–options for reduction
Valenta, Rick K., Lèbre, Éléonore, Antonio, Christian, Franks, Daniel M., Jokovic, Vladimir, Micklethwaite, Steven, Parbhakar-Fox, Anita, Runge, Kym, Savinova, Ekaterina, Segura-Salazar, Juliana, Stringer, Martin, Verster, Isabella and Yahyaei, Mohsen (2023). Decarbonisation to drive dramatic increase in mining waste–options for reduction. Resources, Conservation and Recycling, 190 106859, 1-11. doi: 10.1016/j.resconrec.2022.106859
2023
Journal Article
Experimental study on mechanical properties of 3D-printed specimens of iron oxide, quartz, and bedded composites under uniaxial compression and indirect tensile strength
Barbosa, Karina, Hodder, Kevin and Yahyaei, Mohsen (2023). Experimental study on mechanical properties of 3D-printed specimens of iron oxide, quartz, and bedded composites under uniaxial compression and indirect tensile strength. 3D Printing and Additive Manufacturing, 10 (6), 1224-1237. doi: 10.1089/3dp.2021.0247
2023
Conference Publication
Linking ore type with process performance
Forbes, Gordon, Reyes, Francisco, Madrid, Percy, Wong, Bevin and Yahyaei, Mohsen (2023). Linking ore type with process performance. 26th World Mining Congress, Brisbane, QLD, Australia, 26-29 June 2023.
2023
Journal Article
Assessing the efficacy of grooved grinding rods as lifters in a laboratory rod mill
Khereshki, Majid Khani, Karamoozian, Mohammad and Yahyaei, Mohsen (2023). Assessing the efficacy of grooved grinding rods as lifters in a laboratory rod mill. International Journal of Mining and Geo-Engineering, 57 (3), 299-304. doi: 10.22059/IJMGE.2023.352416.595013
2022
Journal Article
Analysis of force–deformation and force–time profiles of 3D-printed specimens of single and binary mineral composition tested with Short Impact Load Cell
Barbosa, Karina, Hilden, Marko and Yahyaei, Mohsen (2022). Analysis of force–deformation and force–time profiles of 3D-printed specimens of single and binary mineral composition tested with Short Impact Load Cell. Minerals Engineering, 189 107887, 1-16. doi: 10.1016/j.mineng.2022.107887
2022
Other Outputs
Collaborative consortium for coarse particle processing research Q4 2022 technical report
Forbes, Liza, Runge, Kym, Yahyaei, Mohsen, Verster, Lizette, Awatey, Bellson, Miceli, Hayla, Yanez, German Lastra and Skliar, Anna (2022). Collaborative consortium for coarse particle processing research Q4 2022 technical report. Brisbane, QLD, Australia: Sustainable Minerals Institute.
2022
Journal Article
A laboratory-scale characterisation test for quantifying the size segregation of stockpiles
Ye, Z., Yahyaei, M., Hilden, M.M. and Powell, M.S. (2022). A laboratory-scale characterisation test for quantifying the size segregation of stockpiles. Minerals Engineering, 188 107830, 1-13. doi: 10.1016/j.mineng.2022.107830
2022
Journal Article
A 3D cellular automata ore stockpile model – Part 1: Simulation of size segregation
Ye, Z., Hilden, M. M. and Yahyaei, M. (2022). A 3D cellular automata ore stockpile model – Part 1: Simulation of size segregation. Minerals Engineering, 187 107816, 1-10. doi: 10.1016/j.mineng.2022.107816
2022
Conference Publication
Measuring the effect of hybrid classification in a pilot-scale test
Jokovic, Vladimir, Jorge Barbosa, Karina, Ndimande, Conrad, Hilden, Marko, Runge, Kym and Yahyaei, Mohsen (2022). Measuring the effect of hybrid classification in a pilot-scale test. IMPC Asia-Pacific 2022, Melbourne, VIC Australia, 22-24 August 2022. Carlton, VIC Australia: Australasian Institute of Mining and Metallurgy.
2022
Conference Publication
Soft Sensors for Advanced Process Monitoring and Control of Comminution Circuits
Hilden, Marko, Reyes, Francisco, Ye, Ziming, Jokovic, Vladimir, Forbes, Gordon and Yahyaei, Mohsen (2022). Soft Sensors for Advanced Process Monitoring and Control of Comminution Circuits. IMPC Asia Pacific 2022, Melbourne, VIC Australia, 22-24 August 2022. Carlton, VIC Australia: Australasian Institute of Mining and Metallurgy.
2022
Conference Publication
A standardised method for the precise quantification of practical minimum comminution energy
Ali, S., Powell, M. S., Yahyaei, M., Weatherley, D. K. and Ballantyne, G. R. (2022). A standardised method for the precise quantification of practical minimum comminution energy. IMPC Asia-Pacific Conference 2022, Melbourne, VIC Australia, 22–24 August 2022. Carlton, VIC Australia: AusIMM.
2022
Conference Publication
Development of a three-dimensional model for simulating stockpiles and bins with size segregation
Ye, Ziming, Hilden, Marko and Yahyaei, Mohsen (2022). Development of a three-dimensional model for simulating stockpiles and bins with size segregation. IMPC Asia Pacific 2022, Melbourne, VIC Australia, 22-24 August 2022. Carlton, VIC Australia: Australasian Institute of Mining and Metallurgy.
2022
Conference Publication
Detection of ball mill overloading using dynamic time warping
Adhikari, Niranjan, Forbes, Gordon, Hilden, Marko and Yahyaei, Mohsen (2022). Detection of ball mill overloading using dynamic time warping. IMPC Asia-Pacific 2022, Melbourne, VIC Australia, 22-24 August 2022. Carlton, VIC Australia: The Australasian Institute of Mining and Metallurgy.
Funding
Current funding
Past funding
Supervision
Availability
- Professor Mohsen Yahyaei is:
- Available for supervision
Before you email them, read our advice on how to contact a supervisor.
Available projects
-
Effect of Pulp Lifter Design on Mill Performance
Project Description
Most AG and SAG mills use a pulp lifter to remove slurry from the mill. Slurry and fine particles (but not the grinding media) pass through grate apertures at the discharge end of the mill to enter a series of radial compartments, then as the mill rotates with the slurry inside and the compartment is upended, the slurry pours out of the mill. Reducing the efficiency of discharge are: 1) flowback, which occurs when slurry pours via the apertures back into the mill before able to be discharged and 2) carryover, which occurs when some of the slurry remains within the compartment often due to the centrifugal effect.
Various pulp lifter designs are available. In addition to the commonly used radial design, various curved designs offer higher capacity. Furthermore, various chamber designs such as the turbo pulp lifter improve discharge efficiency by reducing flowback and carryover.
The pulp lifter efficiency influences the slurry level for a given throughput, and therefore the grinding performance. There is therefore a link between the lifter design and metallurgical performance of a mill. Unfortunately, models of pulp lifters are inadequate for design and more work needs to be done to understand how various aspects of pulp lifter design impact on the discharge capacity. Moreover, the link between discharge capacity and the grinding performance also needs to be quantified.
Project Objectives
Areas of possible research objectives related to the pulp lifter discharge include:
- Quantify the relationship between mill holdup (filling) and discharge using scale experiments. Limitations of previous experimental work in this area include 1) use of spherical media/water mixtures 2) use of flat-ended designs (cone angle = 0 deg) 3) test mills lacking geometric scaling to industrial mills. 3D printing technology, for example, would enable more realistic scale models to be constructed quickly and cheaply. Data can be used for developing mathematical models of pulp lifter discharge.
- Gain insights into pulp lifter performance including the effect of grate wear on rates of flowback and discharge using numerical methods (DEM/CFD/SPH), and investigate to what extent grate and pulp lifter design can be used to influence this. Data can be used for developing mathematical models or for comparing or developing improved lifter designs.
- Measure SAG mill grinding performance under different slurry discharge rates. For example, a high discharge capacity will result in a lower slurry filling, but a low discharge capacity would result in a higher slurry filling and potentially a slurry pool inside the mill for a given mill filling. Its effect on grinding rates can be studied in a pilot scale mill and/or by analysis of industrial-scale mills surveyed at different times. The outcomes could be used for SAG Mill modelling and for optimising the grate relining and mill speed control strategies employed on mine sites.
- Develop a mathematical model of the discharge capacity. This should include the sub-processes of flowback and carryover. The model would be useful for process design and optimisation.
- Develop methods to monitor pulp lifter performance, such as through the application of sensors. The methodologies developed can be used for process optimisation and improving SAG mill control strategies.
-
Investigating material transport in tumbling mills
Project Description
Neither the SAG mill nor Ball Mill model contain a mechanistic sub-model of mill transport; and the empirical models used presently encompass other discharge mechanisms such as the pulp lifter and flowback in SAG mills and the flow through the trunnion in ball mills. The transport rate determines the ability of particles and slurry to flow through the mill charge and the axial diffusion rate of particles, and is dependent in particular on charge porosity / tortuosity, slurry rheology, and the mill breakage environment. This HDR project proposes to extend both the AG/SAG mill model and the ball mill model with the inclusion of a new transport sub-model based on the theoretical transport equations. A proposed route for modelling is the application of the model being developed by Prof Indresan Govender at UKZN. Govender’s modelling datasets have used bead media therefore the model needs to be tested on real ore slurries and charges containing coarse particles.
Project Objectives
The project objectives are to develop experimental test equipment and procedures to measure transport rate, while controlling slurry viscosity; experimentally and numerically validate the Govender mathematical model of mill charge transport for mineral ore slurries and charge containing balls and coarse particles; and incorporate this model into the AG/SAG and ball mill models.
-
Systematic evaluation of advanced grinding circuit control strategies
Project Description
A wide range of process control strategies have been developed for stabilising grinding circuits. Various degrees of control technology are applied ranging from simple PID feedback loops to advanced process control systems including expert systems, machine learning and model predictive controllers. The difference with respect to plant production performance can be substantial. However, advanced controllers are usually installed as a control system upgrade and due to their complexity, their performance can be unreliable. It is all too frequent that advanced control systems in grinding circuits are switched off to revert to conventional controllers. This PhD project aims to investigate this problem by analysing industrial case studies of advanced controllers and their effectiveness. This includes simulating the grinding circuits in Matlab/Simulink and developing a set of metrics that allow the effectiveness of the advanced control systems to be evaluated.
Project Objectives
This HDR project aims to develop a framework for assessing the effectiveness of different advanced process control strategies and tools to understand how to select process control strategies in grinding circuit applications.
-
Assessing digitisation opportunities for small-scale and conventional operations
Project Description
For the past two decades, large mining companies have made major investments in “digitisation” projects to integrate sensor technologies and data flows across their operations with process control and management systems using sophisticated data analytics and upgraded IT infrastructure. The explosion of new advances in this area has seen the recent availability of low-cost hardware based on open standards and high-quality open source software toolsets that can be applied digitisation projects at mine sites. The proposed PhD project will review which digitisation strategies have been successful in the minerals industry and which strategies already used in larger operations can be translated to smaller scale mining and processing operations.
Project Objectives
This HDR project is focused at mining companies that have not yet implemented large digitisation/data analytics/big data projects, nor installed centralised process control centres. The project aims to identify specific opportunities and data analytics work flow with the aim of demonstrating the value of digitisation technologies. It is intended that the study will work closely with a small-medium mining company and result in a work-flow and tool set framework for real-time data analytics and case-study implementation of ideas generated during the study.
-
Model informed process control for SAG mills
Project Description
Due to the complexity of the process dynamics in most SAG mill circuits, their industrial control systems typically comprise cascaded control loops, and often use some form of expert system or advanced control. This HDR project aims to be a case study for the application of the Model-informed Process Control (MiPC) concept to grinding circuits. The MiPC methodology incorporates dynamic models of processing units into a process control layer linked to process sensor data. The unit models for the grinding and classification units in the circuit are to be based on the latest theoretical phenomenological models developed at SMI-JKMRC. Unlike standard process control loops based on feedback, using mathematical models which are mathematical analogues of the actual process allows the future process state to be predicted. The methodology therefore aims to forward-predict effects of disturbances and respond accordingly, and to infer process conditions that cannot be easily measured with instrumentation such as changes in ore hardness. The project will require the researcher to travel to a mine site to help design an appropriate control strategy, obtain operating data, and to implement process control modifications.
Project Objectives
This HDR project aims to demonstrate the effectiveness of Model-informed Process Control in stabilising and operating industrial grinding circuits. The project will also investigate opportunities to collect additional sensor data for interacting with the models. It is intended that the study will begin with laboratory or bench-scale developments which will then be extended to an implementation within an industrial milling circuit.
-
Investigating surface breakage of multi-component ore
Project Description
Successful optimisation of current comminution circuits and the ability to model and simulate novel and complex circuits is likely to become essential to our need to improve the processing efficiency of ore deposits dramatically. However, our ability to understand and simulate the interactions between ore characteristics and operating factors with process efficiency is still limited to empirical models. A fundamental understanding of the under-pinning mechanisms of size reduction is vital for developing a mechanistic model of comminution. To enable this, an appropriate approach in ore characterisation is critical to experimentally test the breakage under conditions as close as possible to those occurring in the size reduction processes. The drop weight test and JKRBT developed in the Julius Kruttschnitt Mineral Research Centre (JKMRC) are well established for characterising the behaviour of ores in impact and incremental breakage. However, there is no such robust methodology for characterising the surface damage behaviour of rocks. Low energy surface damage, even though it occurs at the lower end of the energy spectrum, has a high frequency of occurrence and plays a significant part during any size reduction process. This project aims to investigate the mechanics of surface damage of various materials under different ranges of stress levels and mechanisms to provide a fundamental understanding of surface damage. Specifically, it aims to study characteristics of the surface damage progeny and develop a methodology to classify ores based on their surface damage behaviour in comminution. The project also aims to apply the understanding of superficial breakage mechanisms to develop a mechanical abrasion model, which is applicable within the UCM’s (Unified Comminution Model) framework.
-
More Projects
More projects are available on Comminution and Classification, Process modelling, Dynamic Modelling, Advanced Process Control and Digitalisation. For details please conact me,
Supervision history
Current supervision
-
Doctor Philosophy
Developing a PESTLE-based Model for the Factors that Drive the Implementation of Synergistic Energy Solutions in Australia
Principal Advisor
Other advisors: Dr Shabbir Ahmad
-
Doctor Philosophy
Dynamic modelling of Comminution circuits for assessing different control strategies
Principal Advisor
-
Doctor Philosophy
Numerical modelling of the influence of stressing mechanisms on preferential and grain boundary breakage
Principal Advisor
Other advisors: Dr Marko Hilden, Dr Dion Weatherley
-
Doctor Philosophy
Dynamic modelling of Comminution circuits for assessing different control strategies
Principal Advisor
-
Doctor Philosophy
Experimental investigation of breakage mechanisms on fracture along grain boundaries
Associate Advisor
Other advisors: Dr Dion Weatherley, Dr Marko Hilden
-
Doctor Philosophy
Developing a Model-Informed Control Strategy for Coal Flotation in a Jameson Cell
Associate Advisor
Other advisors: Associate Professor Kym Runge
-
Doctor Philosophy
Improvement of overall asset performance through the adjustment of business processes using multidisciplinary dynamic performance indicators.
Associate Advisor
Other advisors: Professor Peter Knights
-
Doctor Philosophy
Machine Learning for Identification of Operating States in SABC Circuits
Associate Advisor
Other advisors: Dr Marko Hilden, Dr Gordon Forbes
-
Doctor Philosophy
Machine Learning for Identification of Operating States in SABC Circuits
Associate Advisor
Other advisors: Dr Marko Hilden, Dr Gordon Forbes
-
Doctor Philosophy
Machine Learning for Identification of Operating States in SABC Circuits
Associate Advisor
Other advisors: Dr Marko Hilden, Dr Gordon Forbes
-
Doctor Philosophy
Investigation of the Performance Drivers of the Jameson Cell in a Base Metal Scavenger Application
Associate Advisor
Other advisors: Associate Professor Kym Runge
Completed supervision
-
2023
Doctor Philosophy
Techno-Economic Multicomponent Analysis of Comminution Using Minerals Processing Simulators
Principal Advisor
Other advisors: Emeritus Professor Malcolm Powell
-
2022
Doctor Philosophy
DEVELOPING A 3-D DYNAMIC STOCKPILE/BIN MODEL WITH SIZE SEGREGATION FOR DRY COMMINUTION CIRCUITS
Principal Advisor
Other advisors: Dr Marko Hilden, Emeritus Professor Malcolm Powell
-
2017
Doctor Philosophy
New Approach for Characterising a Breakage Event as a Multi-stage Process
Principal Advisor
Other advisors: Emeritus Professor Malcolm Powell
-
2015
Master Philosophy
Developing an abrasion characterisation test for measuring superficial breakage in comminution
Principal Advisor
Other advisors: Emeritus Professor Malcolm Powell
-
2024
Doctor Philosophy
Developing a Model-Informed Control Strategy for Coal Flotation in a Jameson Cell
Associate Advisor
Other advisors: Associate Professor Kym Runge
-
2024
Doctor Philosophy
Development of a novel ore characterisation method for the precise measurement of practical minimum comminution energy
Associate Advisor
Other advisors: Dr Dion Weatherley, Emeritus Professor Malcolm Powell
-
2024
Doctor Philosophy
Impact of Mining Technological Innovations on Iron Ore Share Prices
Associate Advisor
Other advisors: Dr Rand Low, Associate Professor Mehmet Kizil
-
2024
Doctor Philosophy
Developing a Digital Twin for Real-time Remote Ball Mill Operation
Associate Advisor
Other advisors: Associate Professor Mehmet Kizil
Media
Enquiries
Contact Professor Mohsen Yahyaei directly for media enquiries about:
- Comminution
- Mill liner design
- Mill liner wear
- Mineral processing
- Surface breakage characterisation
Need help?
For help with finding experts, story ideas and media enquiries, contact our Media team: