2025 Journal Article Advances and challenges in hybrid photovoltaic-thermoelectric systems for renewable energyMoshwan, Raza, Shi, Xiao-Lei, Zhang, Min, Yue, Yicheng, Liu, Wei-Di, Li, Meng, Wang, Lijun, Liang, Daniel and Chen, Zhi-Gang (2025). Advances and challenges in hybrid photovoltaic-thermoelectric systems for renewable energy. Applied Energy, 380 125032, 125032-380. doi: 10.1016/j.apenergy.2024.125032 |
2025 Journal Article Investigating Changes in the Physicochemical and Structural–Functional Properties of Soybean Milk Under an Industry-Scale Microfluidization SystemBao, Meng-xiao, Wang, Jie, Zeng, Yan, Guo, Wen, Li, Zhen, Wu, Yue and Chen, Zhi-gang (2025). Investigating Changes in the Physicochemical and Structural–Functional Properties of Soybean Milk Under an Industry-Scale Microfluidization System. Food and Bioprocess Technology, 1-15. doi: 10.1007/s11947-025-03762-4 |
2025 Journal Article Enabling ultra-flexible inorganic thin-film-based thermoelectric devices by introducing nanoscale titanium layersTan, Ming, Shi, Xiao-Lei, Liu, Wei-Di, Jiang, Yong, Liu, Si-Qi, Cao, Tianyi, Chen, Wenyi, Li, Meng, Lin, Tong, Deng, Yuan, Liu, Shaomin and Chen, Zhi-Gang (2025). Enabling ultra-flexible inorganic thin-film-based thermoelectric devices by introducing nanoscale titanium layers. Nature Communications, 16 (1) 633, 633. doi: 10.1038/s41467-025-56015-5 |
2025 Journal Article Lattice defect engineering advances n-type PbSe thermoelectricsDeng, Qian, Shi, Xiao-Lei, Li, Meng, Tan, Xiaobo, Li, Ruiheng, Wang, Chen, Chen, Yue, Dong, Hongliang, Ang, Ran and Chen, Zhi-Gang (2025). Lattice defect engineering advances n-type PbSe thermoelectrics. Nature Communications, 16 (1) 656, 656. doi: 10.1038/s41467-025-56003-9 |
2025 Journal Article Revisiting Cobalt Dopability in GeTe System to Design Modulation-Doped ThermoelectricsHu, Ming-Hang, Li, Meng, Wang, De-Zhuang, Yin, Liang-Cao, Wu, Hao, Liu, Wei-Di, Shi, Xiao-Lei, Wang, Yifeng, Liu, Qingfeng and Chen, Zhi-Gang (2025). Revisiting Cobalt Dopability in GeTe System to Design Modulation-Doped Thermoelectrics. Advanced Functional Materials. doi: 10.1002/adfm.202421837 |
2025 Journal Article Termination-acidity tailoring of molybdenum carbides for alkaline hydrogen evolution reactionChen, Zhigang, Yang, Minghao, Li, Yifan, Gong, Wenbin, Wang, Juan, Liu, Tong, Zhang, Chunyu, Hou, Shuang, Yang, Guang, Li, Hao, Jin, Ye, Zhang, Chunyan, Tian, Zhongqing, Meng, Fancheng and Cui, Yi (2025). Termination-acidity tailoring of molybdenum carbides for alkaline hydrogen evolution reaction. Nature Communications, 16 (1) 418, 1. doi: 10.1038/s41467-025-55854-6 |
2025 Journal Article Introducing atomistic dynamics at van der Waals surfaces for enhancing the thermoelectric performance of layered Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub>Mansoor, Adil, Jabar, Bushra, Shah, Syed Shoaib Ahmad, Javed, Muhammad Sufyan, Najam, Tayyaba, Ishaq, Muhammad, Chen, Shuo, Li, Fu, Shi, Xiao-Lei, Chen, Yue-Xing, Liang, Guang-Xing, Chen, Zhi-Gang and Zheng, Zhuang-Hao (2025). Introducing atomistic dynamics at van der Waals surfaces for enhancing the thermoelectric performance of layered Bi0.4Sb1.6Te3. Energy & Environmental Science, 18 (5), 2485-2498. doi: 10.1039/d4ee04930f |
2025 Journal Article Advances and Challenges in SnTe-Based ThermoelectricsWang, Lijun, Moshwan, Raza, Yuan, Ningyi, Chen, Zhi-Gang and Shi, Xiao-Lei (2025). Advances and Challenges in SnTe-Based Thermoelectrics. Advanced Materials, 37 (10) 2418280. doi: 10.1002/adma.202418280 |
2025 Journal Article Molybdenum Single-Atom Solid-Acid Catalyst for the Hydrogen Evolution Reaction in the Alkaline ElectrolyteYang, Guang, Zhang, Chunyu, Chen, Zhigang, Wang, Juan, Gao, Guoliang, Li, Zhiyun, Huang, Rong and Cui, Yi (2025). Molybdenum Single-Atom Solid-Acid Catalyst for the Hydrogen Evolution Reaction in the Alkaline Electrolyte. ACS Catalysis, 15 (3), 2270-2281. doi: 10.1021/acscatal.4c05602 |
2025 Journal Article A two-step strategy improves the wide-temperature-range thermoelectric performance of Mg<sub>3+<i>x</i></sub>Bi<sub>1.29</sub>Sb<sub>0.7</sub>Te<sub>0.01</sub>Ma, Yushuo, Shi, Xiao-Lei, Zhang, Li, Gao, Han, Li, Meng, Yin, Liang-Cao, Liu, Wei-Di, Liu, Qingfeng, Yang, Yan-Ling and Chen, Zhi-Gang (2025). A two-step strategy improves the wide-temperature-range thermoelectric performance of Mg3+xBi1.29Sb0.7Te0.01. Journal of Materials Chemistry A. doi: 10.1039/d4ta08026b |
2025 Journal Article Solvothermally optimizing Ag<sub>2</sub>Te/Ag<sub>2</sub>S composites with high thermoelectric performance and plasticityZhu, Min, Shi, Xiao-Lei, Li, Meng, Wu, Hao, Wang, De-Zhuang, Yin, Liang-Cao, Wu, Ting, Liu, Wei-Di, Huang, Yan, Chen, Zhi-Gang and Liu, Qingfeng (2025). Solvothermally optimizing Ag2Te/Ag2S composites with high thermoelectric performance and plasticity. Materials Horizons, 12 (7), 2380-2388. doi: 10.1039/d4mh01654h |
2025 Journal Article Bottom-up assembly of recyclable van der Waals-integrated photocatalysts towards efficient photoelectrocatalytic degradationChen, Hua-Jun, Lu, Zhao-Ming, Yang, Yan-Ling, Shi, Xiao-Lei, Chen, Jin-Geng, Hu, Ze-Nan, Zhang, Bi-Ying, Chen, Yue-Feng, Sun, Yu and Chen, Zhi-Gang (2025). Bottom-up assembly of recyclable van der Waals-integrated photocatalysts towards efficient photoelectrocatalytic degradation. Journal of Materials Chemistry A, 13 (14), 9764-9777. doi: 10.1039/d4ta07813f |
2024 Journal Article High‐performance GeSe‐based thermoelectrics via Cu‐dopingZhang, Min, Shi, Xiao‐Lei, Mao, Yuanqing, Li, Meng, Moshwan, Raza, Cao, Tianyi, Chen, Wenyi, Yin, Liangcao, Lyu, Wanyu, Chen, Yongqi, Liu, Siqi, Liu, Wei‐Di, Liu, Qingfeng, Tang, Guihua and Chen, Zhi‐Gang (2024). High‐performance GeSe‐based thermoelectrics via Cu‐doping. Advanced Functional Materials, 34 (52) 2411054. doi: 10.1002/adfm.202411054 |
2024 Journal Article Hydrogel‐based functional materials for thermoelectric applications: progress and perspectivesZhang, Chenyang, Shi, Xiao‐Lei, Liu, Qingyi and Chen, Zhi‐Gang (2024). Hydrogel‐based functional materials for thermoelectric applications: progress and perspectives. Advanced Functional Materials, 34 (51) 2410127. doi: 10.1002/adfm.202410127 |
2024 Journal Article Nanobinders advance screen-printed flexible thermoelectricsChen, Wenyi, Shi, Xiao-Lei, Li, Meng, Liu, Ting, Mao, Yuanqing, Liu, Qingyi, Dargusch, Matthew, Zou, Jin, Lu, Gao Qing (Max) and Chen, Zhi-Gang (2024). Nanobinders advance screen-printed flexible thermoelectrics. Science, 386 (6727), 1265-1271. doi: 10.1126/science.ads5868 |
2024 Journal Article Synthesis of Ni(OH)2‐g‐C3N4/C composite by biological template for asymmetric supercapacitorChen, Fei, Liu, Chengbao, Zheng, Leizhi, Chen, Feng, Qian, Junchao, Qiu, Yongbin, Meng, Xianron and Chen, Zhigang (2024). Synthesis of Ni(OH)2‐g‐C3N4/C composite by biological template for asymmetric supercapacitor. Advanced Engineering Materials, 26 (23) 2401235. doi: 10.1002/adem.202401235 |
2024 Journal Article High-performance thermoelectric PEDOT:PSS fiber bundles via rational ionic liquid treatmentDeng, Yu-Yu, Shi, Xiao-Lei, Wu, Ting, Wu, Hao, Liu, Yuan-Meng, Zhu, Min, Liu, Wei-Di, Li, Meng, Huang, Pei, Liu, Qingfeng and Chen, Zhi-Gang (2024). High-performance thermoelectric PEDOT:PSS fiber bundles via rational ionic liquid treatment. Chemical Engineering Journal, 502 158104, 158104. doi: 10.1016/j.cej.2024.158104 |
2024 Journal Article Pioneering Exploration for a lasting and sustainable futureLi, Gaopeng, Chen, Zhi-Gang and Wang, Chengliang (2024). Pioneering Exploration for a lasting and sustainable future. Exploration, 4 (6) 2376, 6. doi: 10.1002/EXP.20240397 |
2024 Journal Article Advances and challenges in inorganic bulk-based flexible thermoelectric devicesLiu, Qing-Yi, Shi, Xiao-Lei, Cao, Tian-Yi, Chen, Wen-Yi, Li, Lan and Chen, Zhi-Gang (2024). Advances and challenges in inorganic bulk-based flexible thermoelectric devices. Progress in Materials Science, 150 101420, 101420. doi: 10.1016/j.pmatsci.2024.101420 |
2024 Journal Article Defect engineering advances thermoelectric materialsWu, Chunlu, Shi, Xiao-Lei, Wang, Lijun, Lyu, Wanyu, Yuan, Pei, Cheng, Lina, Chen, Zhi-Gang and Yao, Xiangdong (2024). Defect engineering advances thermoelectric materials. ACS Nano, 18 (46), 31660-31712. doi: 10.1021/acsnano.4c11732 |