Skip to menu Skip to content Skip to footer

2019

Journal Article

A multilevel survival model with random covariates and unobservable random effects

Tawiah, Rchard, Yau, Kelvin K. W., McLachlan, Geoffrey J., Chambers, Suzanne and Ng, Shu-Kay (2019). A multilevel survival model with random covariates and unobservable random effects. Statistics in Medicine, 38 (6), 1036-1055. doi: 10.1002/sim.8041

A multilevel survival model with random covariates and unobservable random effects

2019

Conference Publication

PPEM: privacy-preserving EM learning for mixture models

Lee, Sharon X., Leemaqz, Kaleb L. and McLachlan, Geoffrey J. (2019). PPEM: privacy-preserving EM learning for mixture models. 8th International Conference on Applications and Techniques in Information Security, ATIS 2017, Auckland, New Zealand, 6-7 July 2017. Oxford, United Kingdom: John Wiley & Sons. doi: 10.1002/cpe.5208

PPEM: privacy-preserving EM learning for mixture models

2019

Journal Article

Finite mixture models

McLachlan, Geoffrey J., Lee, Sharon X. and Rathnayake, Suren I. (2019). Finite mixture models. Annual Review of Statistics and Its Application, 6 (1), 355-378. doi: 10.1146/annurev-statistics-031017-100325

Finite mixture models

2019

Conference Publication

Positive data kernel density estimation via the LogKDE package for R

Jones, Andrew T., Nguyen, Hien D. and McLachlan, Geoffrey J. (2019). Positive data kernel density estimation via the LogKDE package for R. AusDM 2018: 16th Australasian Conference on Data Mining, Bahrurst, NSW, Australia, 28 - 30 November 2018. Singapore, Singapore: Springer Singapore. doi: 10.1007/978-981-13-6661-1_21

Positive data kernel density estimation via the LogKDE package for R

2019

Conference Publication

Flexible modelling via multivariate skew distributions

McLachlan, Geoffrey J. and Lee, Sharon X. (2019). Flexible modelling via multivariate skew distributions. Research School on Statistics and Data Science (RSSDS 2019), Melbourne, VIC, Australia, 24–26 July 2019. Singapore, Singapore: Springer Singapore. doi: 10.1007/978-981-15-1960-4_4

Flexible modelling via multivariate skew distributions

2019

Book Chapter

Mixture of factor analyzers for the clustering and visualization of high-dimensional data

McLachlan, Geoffrey J., Baek, Jangsun and Rathnayake, Suren I. (2019). Mixture of factor analyzers for the clustering and visualization of high-dimensional data. Advances in latent class analysis: a festschrift in honor of C. Mitchell Dayton. (pp. 79-98) edited by Gregory R. Hancock, Jeffrey R. Harring and George B. Macready. Charlotte, NC, United States: Information Age Publishing.

Mixture of factor analyzers for the clustering and visualization of high-dimensional data

2019

Journal Article

Skew-normal generalized spatial panel data model

Farzammehr, Mohadeseh Alsadat, Zadkarami, Mohammad Reza and McLachlan, Geoffrey J. (2019). Skew-normal generalized spatial panel data model. Communications in Statistics: Simulation and Computation, 50 (11), 1-29. doi: 10.1080/03610918.2019.1622718

Skew-normal generalized spatial panel data model

2019

Journal Article

Skew-normal Bayesian spatial heterogeneity panel data models

Farzammehr, Mohadeseh Alsadat, Zadkarami, Mohammad Reza, McLachlan, Geoffrey J. and Lee, Sharon X. (2019). Skew-normal Bayesian spatial heterogeneity panel data models. Journal of Applied Statistics, 47 (5), 1-23. doi: 10.1080/02664763.2019.1657812

Skew-normal Bayesian spatial heterogeneity panel data models

2019

Journal Article

Mixture cure models with time-varying and multilevel frailties for recurrent event data

Tawiah, Richard, McLachlan, Geoffrey J. and Ng, Shu Kay (2019). Mixture cure models with time-varying and multilevel frailties for recurrent event data. Statistical Methods in Medical Research, 29 (5) 0962280219859377, 096228021985937-1385. doi: 10.1177/0962280219859377

Mixture cure models with time-varying and multilevel frailties for recurrent event data

2018

Journal Article

Unsupervised pattern recognition of mixed data structures with numerical and categorical features using a mixture regression modelling framework

Ng, Shu-Kay, Tawiah, Richard and McLachlan, Geoffrey J. (2018). Unsupervised pattern recognition of mixed data structures with numerical and categorical features using a mixture regression modelling framework. Pattern Recognition, 88, 261-271. doi: 10.1016/j.patcog.2018.11.022

Unsupervised pattern recognition of mixed data structures with numerical and categorical features using a mixture regression modelling framework

2018

Journal Article

Randomized mixture models for probability density approximation and estimation

Nguyen, Hien D., Wang, Dianhui and McLachlan, Geoffrey J. (2018). Randomized mixture models for probability density approximation and estimation. Information Sciences, 467, 135-148. doi: 10.1016/j.ins.2018.07.056

Randomized mixture models for probability density approximation and estimation

2018

Journal Article

logKDE: log-transformed kernel density estimation

Jones, Andrew T., Nguyen, Hien D. and McLachlan, Geoffrey J. (2018). logKDE: log-transformed kernel density estimation. Journal of Open Source Software, 3 (28) 870, 870. doi: 10.21105/joss.00870

logKDE: log-transformed kernel density estimation

2018

Journal Article

Stream-suitable optimization algorithms for some soft-margin support vector machine variants

Nguyen, Hien D., Jones, Andrew T. and McLachlan, Geoffrey J. (2018). Stream-suitable optimization algorithms for some soft-margin support vector machine variants. Japanese Journal of Statistics and Data Science., 1 (1), 81-108. doi: 10.1007/s42081-018-0001-y

Stream-suitable optimization algorithms for some soft-margin support vector machine variants

2018

Journal Article

A Block EM Algorithm for Multivariate Skew Normal and Skew t-Mixture Models

Lee, Sharon X., Leemaqz, Kaleb L. and McLachlan, Geoffrey J. (2018). A Block EM Algorithm for Multivariate Skew Normal and Skew t-Mixture Models. IEEE Transactions on Neural Networks and Learning Systems, 29 (99) 8310916, 1-11. doi: 10.1109/TNNLS.2018.2805317

A Block EM Algorithm for Multivariate Skew Normal and Skew t-Mixture Models

2018

Journal Article

A globally convergent algorithm for a lasso-penalized mixture of linear regression models

Lloyd-Jones, Luke R., Nguyen, Hien D. and McLachlan, Geoffrey J. (2018). A globally convergent algorithm for a lasso-penalized mixture of linear regression models. Computational Statistics and Data Analysis, 119, 19-38. doi: 10.1016/j.csda.2017.09.003

A globally convergent algorithm for a lasso-penalized mixture of linear regression models

2018

Journal Article

Chunked-and-averaged estimators for vector parameters

Nguyen, Hien D. and McLachlan, Geoffrey J. (2018). Chunked-and-averaged estimators for vector parameters. Statistics and Probability Letters, 137, 336-342. doi: 10.1016/j.spl.2018.02.051

Chunked-and-averaged estimators for vector parameters

2018

Journal Article

EMMIXcskew: an R package for the fitting of a mixture of canonical fundamental skew t-distributions

Lee, Sharon X. and McLachlan, Geoffrey J. (2018). EMMIXcskew: an R package for the fitting of a mixture of canonical fundamental skew t-distributions. Journal of Statistical Software, 83 (3). doi: 10.18637/jss.v083.i03

EMMIXcskew: an R package for the fitting of a mixture of canonical fundamental skew t-distributions

2018

Book Chapter

Risk measures based on multivariate skew normal and skew t-mixture models

Lee, Sharon X. and McLachlan, Geoffrey J. (2018). Risk measures based on multivariate skew normal and skew t-mixture models. Asymmetric dependence in finance: diversification, correlation and portfolio management in market downturns. (pp. 152-168) edited by Jamie Alcock and Stephen Satchell. Chichester, West Sussex, United Kingdom: John Wiley & Sons. doi: 10.1002/9781119288992.ch7

Risk measures based on multivariate skew normal and skew t-mixture models

2017

Journal Article

Whole-volume clustering of time series data from zebrafish brain calcium images via mixture modeling

Nguyen, Hien D., Ullmann, Jeremy F. P., Mclachlan, Geoffrey J., Voleti, Venkatakaushik, Li, Wenze, Hillman, Elizabeth M. C., Reutens, David C. and Janke, Andrew L. (2017). Whole-volume clustering of time series data from zebrafish brain calcium images via mixture modeling. Statistical Analysis and Data Mining, 11 (1), 5-16. doi: 10.1002/sam.11366

Whole-volume clustering of time series data from zebrafish brain calcium images via mixture modeling

2017

Journal Article

Deep Gaussian mixture models

Viroli, Cinzia and McLachlan, Geoffrey J. (2017). Deep Gaussian mixture models. Statistics and Computing, 29 (1), 1-9. doi: 10.1007/s11222-017-9793-z

Deep Gaussian mixture models