Skip to menu Skip to content Skip to footer

2017

Journal Article

Some theoretical results regarding the polygonal distribution

Nguyen, Hien D. and McLachlan, Geoffrey J. (2017). Some theoretical results regarding the polygonal distribution. Communications in Statistics: Theory and Methods, 47 (20), 5083-5095. doi: 10.1080/03610926.2017.1386312

Some theoretical results regarding the polygonal distribution

2017

Journal Article

Finite mixture models in biostatistics

Lee, Sharon X., Ng, Shu-Kay and McLachlan, Geoffrey J. (2017). Finite mixture models in biostatistics. Handbook of Statistics, 36, 75-102.

Finite mixture models in biostatistics

2017

Journal Article

Robust mixtures of factor analysis models using the restricted multivariate skew-t distribution

Lin, Tsung-I, Wang, Wan-Lun, McLachlan, Geoffrey J. and Lee, Sharon X. (2017). Robust mixtures of factor analysis models using the restricted multivariate skew-t distribution. Statistical Modelling, 18 (1), 50-72. doi: 10.1177/1471082X17718119

Robust mixtures of factor analysis models using the restricted multivariate skew-t distribution

2017

Journal Article

Maximum pseudolikelihood estimation for model-based clustering of time series data

Nguyen, Hien D., McLachlan, Geoffrey J., Orban, Pierre, Bellec, Pierre and Janke, Andrew L. (2017). Maximum pseudolikelihood estimation for model-based clustering of time series data. Neural Computation, 29 (4), 990-1020. doi: 10.1162/NECO_a_00938

Maximum pseudolikelihood estimation for model-based clustering of time series data

2017

Conference Publication

Corruption-resistant privacy preserving distributed EM algorithm for model-based clustering

Leemaqz, Kaleb L., Lee, Sharon X. and McLachlan, Geoffrey J. (2017). Corruption-resistant privacy preserving distributed EM algorithm for model-based clustering. 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, NSW, Australia, 1 - 4 August 2017. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers. doi: 10.1109/Trustcom/BigDataSE/ICESS.2017.356

Corruption-resistant privacy preserving distributed EM algorithm for model-based clustering

2017

Book Chapter

Statistical evaluation of labeled comparative profiling proteomics experiments using permutation test

Nguyen, Hien D., McLachlan, Geoffrey J. and Hill, Michelle M. (2017). Statistical evaluation of labeled comparative profiling proteomics experiments using permutation test. Proteome bioinformatics. (pp. 109-117) edited by Shivakumar Keerthikumar and Suresh Mathivanan. New York, NY United States: Humana Press. doi: 10.1007/978-1-4939-6740-7_9

Statistical evaluation of labeled comparative profiling proteomics experiments using permutation test

2017

Book Chapter

Finite mixture models in biostatistics

Lee, Sharon X., Ng, Shu-Kay and McLachlan, Geoffrey J. (2017). Finite mixture models in biostatistics. Disease Modelling and Public Health, Part A. (pp. 75-102) edited by Arni S.R. Srinivasa Rao, Saumyadipta Pyne and C.R. Rao. Amsterdam, Netherlands: Elsevier. doi: 10.1016/bs.host.2017.08.005

Finite mixture models in biostatistics

2017

Conference Publication

Privacy distributed three-party learning of Gaussian mixture models

Leemaqz, Kaleb L., Lee, Sharon X. and McLachlan, Geoffrey J. (2017). Privacy distributed three-party learning of Gaussian mixture models. International Conference on Applications and Technologies in Information Security (ATIS), Auckland, New Zealand, 6-7 July 2017. Singapore: Springer Singapore. doi: 10.1007/978-981-10-5421-1_7

Privacy distributed three-party learning of Gaussian mixture models

2017

Conference Publication

On the identification of correlated differential features for supervised classification of high-dimensional data

Ng, Shu Kay and McLachlan, Geoffrey J. (2017). On the identification of correlated differential features for supervised classification of high-dimensional data. 15th Conference of the International Federation of Classification Societies (IFCS), Bologna, Italy, July 5-8, 2015. Cham, Switzerland: Springer. doi: 10.1007/978-3-319-55723-6_4

On the identification of correlated differential features for supervised classification of high-dimensional data

2017

Book Chapter

Clustering

McLachlan, G. J., Bean, R. W. and Ng, S. K. (2017). Clustering. Bioinformatics Vol. II: Structure, Function, and Applications. (pp. 345-362) edited by Jonathan M. Keith. New York, NY, United States: Humana Press. doi: 10.1007/978-1-4939-6613-4_19

Clustering

2017

Conference Publication

Iteratively-reweighted least-squares fitting of support vector machines: a majorization–minimization algorithm approach

Nguyen, Hien D. and McLachlan, Geoffrey J. (2017). Iteratively-reweighted least-squares fitting of support vector machines: a majorization–minimization algorithm approach. Future Technologies Conference (FTC) 2017, Vancouver, Canada, 29-30 November 2017. Piscataway, NJ United States: IEEE.

Iteratively-reweighted least-squares fitting of support vector machines: a majorization–minimization algorithm approach

2017

Book Chapter

On the identification of correlated differential features for supervised classification of high-dimensional data

Ng, Shu Kay and McLachlan, Geoffrey J. (2017). On the identification of correlated differential features for supervised classification of high-dimensional data. Data science, innovative developments in data analysis and clustering. (pp. 43-57) edited by Francesco Palumbo, Angela Montanari and Maurizio Vichi. Cham, Switzerland: Springer. doi: 10.1007/978-3-319-55723-6

On the identification of correlated differential features for supervised classification of high-dimensional data

2016

Journal Article

Partial identification in the statistical matching problem

Ahfock, Daniel, Pyne, Saumyadipta, Lee, Sharon X. and McLachlan, Geoffrey J. (2016). Partial identification in the statistical matching problem. Computational Statistics and Data Analysis, 104, 79-90. doi: 10.1016/j.csda.2016.06.005

Partial identification in the statistical matching problem

2016

Journal Article

Mixture of time-dependent growth models with an application to blue swimmer crab length-frequency data

Lloyd-Jones, Luke R., Nguyen, Hien D., Mclachlan, Geoffrey J., Sumpton, Wayne and Wang, You-Gan (2016). Mixture of time-dependent growth models with an application to blue swimmer crab length-frequency data. Biometrics, 72 (4), 1255-1265. doi: 10.1111/biom.12531

Mixture of time-dependent growth models with an application to blue swimmer crab length-frequency data

2016

Journal Article

A universal approximation theorem for mixture-of-experts models

Nguyen, Hien D., Lloyd-Jones, Luke R. and McLachlan, Geoffrey J. (2016). A universal approximation theorem for mixture-of-experts models. Neural Computation, 28 (12), 2585-2593. doi: 10.1162/NECO_a_00892

A universal approximation theorem for mixture-of-experts models

2016

Journal Article

Progress on a conjecture regarding the triangular distribution

Nguyen, Hien D. and McLachlan, Geoffrey J. (2016). Progress on a conjecture regarding the triangular distribution. Communications in Statistics: Theory and Methods, 46 (22), 11261-11271. doi: 10.1080/03610926.2016.1263742

Progress on a conjecture regarding the triangular distribution

2016

Journal Article

Spatial clustering of time series via mixture of autoregressions models and Markov random fields

Nguyen, Hien D., McLachlan, Geoffrey J., Ullmann, Jeremy F. P. and Janke, Andrew L. (2016). Spatial clustering of time series via mixture of autoregressions models and Markov random fields. Statistica Neerlandica, 70 (4), 414-439. doi: 10.1111/stan.12093

Spatial clustering of time series via mixture of autoregressions models and Markov random fields

2016

Journal Article

Linear mixed models with marginally symmetric nonparametric random effects

Nguyen, Hien D. and McLachlan, Geoffrey J. (2016). Linear mixed models with marginally symmetric nonparametric random effects. Computational Statistics and Data Analysis, 103, 151-169. doi: 10.1016/j.csda.2016.05.005

Linear mixed models with marginally symmetric nonparametric random effects

2016

Journal Article

Maximum likelihood estimation of triangular and polygonal distributions

Nguyen, Hien D. and McLachlan, Geoffrey J. (2016). Maximum likelihood estimation of triangular and polygonal distributions. Computational Statistics and Data Analysis, 102, 23-36. doi: 10.1016/j.csda.2016.04.003

Maximum likelihood estimation of triangular and polygonal distributions

2016

Journal Article

Comment on "On nomenclature for, and the relative merits of, two formulations of skew distributions," by A. Azzalini, R. Browne, M. Genton, and P. McNicholas

McLachlan, Geoffrey J. and Lee, Sharon X. (2016). Comment on "On nomenclature for, and the relative merits of, two formulations of skew distributions," by A. Azzalini, R. Browne, M. Genton, and P. McNicholas. Statistics & Probability Letters, 116, 1-5. doi: 10.1016/j.spl.2016.04.004

Comment on "On nomenclature for, and the relative merits of, two formulations of skew distributions," by A. Azzalini, R. Browne, M. Genton, and P. McNicholas