Overview
Background
David Gildfind’s research is primarily concerned with experimental hypersonics. His research interests include: expansion tube facility development; scramjet propulsion; planetary entry aerothermodynamics; and magnetohydrodynamic aerobraking.
David graduated as an aerospace engineer from RMIT University in 2001. He worked in industry on various aircraft platforms in Australia and overseas (GKN in Melbourne 2002-2003 on A340/A380; Australian Aerospace in Brisbane 2003-2005 on DHC4 Caribou; and Stork Fokker in The Netherlands 2005-2007 on F35-JSF and Gulfstream G6), and retains a strong interest in aircraft structures. He later completed his PhD and post-doctoral work in hypersonics at the University of Queensland (UQ), where he developed the capability for expansion tubes wind tunnels to simulate reallistic scramjet flight trajectories beyond Mach 10. His research in this area includes optimising free-piston driver operation, expansion tube flow condition development, and test flow characterisation.
David became a lecturer at UQ's School of Mechanical and Mining Engineering in 2014, and teaches into aircraft structures, design, and hypersonics. During this time David has initiated a new research program on Magnetohydrodynamic (MHD) aerobraking, which was awarded an ARC DECRA fellowship (2017-2020) to experimentally evaluate MHD aerobraking technology for a human mission to Mars. This work continues with ARC Discovery Projects "Magnetohydrodynamic Aerobraking for Spacecraft Entry to Earth's Atmosphere" (2023-2025) and "Effect of Magnetic Field Deflection on Magnetohydrodynamic Heat Shield" (2025-2027), both of which David is leading. These projects are focussing on the development of new MHD aerobraking technology for both small and large scale spacecraft, to reduce spacecraft heating, leading to safer, more efficient, and potentially reusable spacecraft.
Availability
- Dr David Gildfind is:
- Available for supervision
- Media expert
Fields of research
Qualifications
- Doctor of Philosophy, The University of Queensland
- Postgraduate Diploma in Higher Education, The University of Queensland
Research interests
-
Expansion tube facility development
-
Shock tunnel facility development
-
Magnetohydrodynamic aerobraking
-
Planetary entry aerothermodynamics
-
Scramjet propulsion
Research impacts
Expansion tube facility development: expansion tubes are the only hypersonic wind tunnels capable of simulating the final stages of flight for a scramjet powered access-to-space launch vehicle, or of simulating true-flight-velocity aerodynamic flows for Earth return from deep space. Such experiments in a conventional wind tunnel become extraordinarilly difficult for scramjet flight beyond Mach 10 and spacecraft atmospheric entry faster than 7 km/s. Our research into expansion tubes is important because it significantly widens the range of reallistic aerodynamic ground testing which we can perform, paving the way for experimental evaluation of the spacecraft technologies of the future.
Magnetohydrodynamic (MHD) aerobraking: The purpose of MHD aerobraking is to mitigate the immense heat loads during spacecrafct atmospheric entry and to facilitate landing on planets with low density atmospheres. Our team at UQ have conducted the first ground test experiments which have simulated this technology at flight-realistic hypervelocity speeds and with the correct electrodynamic boundary conditions around the body. We have been able to conduct magnetic drag measurements and measure the effect of the magnetic field on the shock layer which forms around the vehicle, and are now investigating how this technology can be harnessed in future spacecraft.
Works
Search Professor David Gildfind’s works on UQ eSpace
2002
Conference Publication
Crash Pulse Optimisation for Minimum Occupant Harm - A New Methodology to Calculate Fully Optimised Crash Pulses
Gildfind, David and Rees, David (2002). Crash Pulse Optimisation for Minimum Occupant Harm - A New Methodology to Calculate Fully Optimised Crash Pulses. Young Automotive and Transport Executives Conference 2002, Melbourne, VIC Australia, 29-30 October 2002. SAE Australasia.
2001
Other Outputs
Vehicle crash pulse optimisation
Gildfind, David (2001). Vehicle crash pulse optimisation. B.A. Thesis, Departmen of Aerospace Engineering, RMIT University.
Funding
Current funding
Supervision
Availability
- Dr David Gildfind is:
- Available for supervision
Looking for a supervisor? Read our advice on how to choose a supervisor.
Available projects
-
Effect of Magnetic Field Deflection on Magnetohydrodynamic Heat Shield
Four projects are available:
- Magnetic field deflection in hypersonic MHD flow: This project aims to experimentally reproduce and characterise the phenomenon of magnetic field deflection in hypersonic ground test experiments.
- Bow shock structure in high magnetic Reynolds number MHD flow: This project aims to isolate and experimentally measure the effect of magnetic field deflection on the shock stand-off and shock shape for hypersonic flow around a blunt body such as sphere or capsule.
- Trajectory optimisation for atmospheric entry with MHD flow control: This project aims to determine the optimum way to use MHD flow control during atmospheric entry.
- Geometry and magnet optimisation for MHD-assisted spacecraft: This project aims to determine how MHD drag can be maximised by optimising forebody contour and electromagnet configuration.
Supervision history
Current supervision
-
Doctor Philosophy
Magnetohydrodynamic flow control for atmospheric entry
Principal Advisor
Other advisors: Emeritus Professor David Mee, Professor Tim McIntyre
-
Doctor Philosophy
Optimised use of Magnetohydrodynamic Aerobraking for Planetary Atmospheric Entry
Principal Advisor
Other advisors: Professor Vincent Wheatley, Associate Professor Rowan Gollan
-
Doctor Philosophy
Effect of magnetohydrodynamic aerobraking on convective and radiative heat transfer during atmospheric reentry
Principal Advisor
Other advisors: Emeritus Professor David Mee, Professor Tim McIntyre
-
Doctor Philosophy
Experimental Investigation of Turbulence Chemistry Interaction in High Enthalpy Flows
Associate Advisor
Other advisors: Professor Anand Veeraragavan, Dr Chris James
-
Doctor Philosophy
Walsh functions for high-resolution shock capturing and their application to expansion tube simulations
Associate Advisor
Other advisors: Associate Professor Rowan Gollan
Completed supervision
-
2023
Doctor Philosophy
Magnetohydrodynamic Aerobraking for Earth Re-entry from Deep Space
Principal Advisor
Other advisors: Professor Tim McIntyre
-
2021
Doctor Philosophy
Magnetohydrodynamic drag force experiments in expansion tunnels
Principal Advisor
Other advisors: Professor Vincent Wheatley, Professor Tim McIntyre
-
2020
Doctor Philosophy
Development of an Extended Test Time Operating Mode for a Large Reflected Shock Tunnel Facility
Principal Advisor
-
2020
Doctor Philosophy
Ground Testing at Superorbital Flight Conditions in a Large Scale Expansion Tube
Principal Advisor
Other advisors: Professor Richard Morgan
-
2019
Doctor Philosophy
Free-jet testing of a Mach 12 scramjet in an expansion tube
Principal Advisor
Other advisors: Professor Richard Morgan
-
2020
Doctor Philosophy
Spectral Analysis of Atomic Argon Radiation in an Expanding Hypersonic Flow
Associate Advisor
Other advisors: Professor Tim McIntyre
-
2018
Doctor Philosophy
Radiation from Simulated Atmospheric Entry into the Gas Giants
Associate Advisor
Other advisors: Professor Tim McIntyre, Professor Richard Morgan
-
2016
Doctor Philosophy
SCRAMJET TESTING AT HIGH TOTAL PRESSURE
Associate Advisor
Other advisors: Professor Richard Morgan
Media
Enquiries
Contact Dr David Gildfind directly for media enquiries about:
- Aerospace Engineering
- Expansion tubes
- Experimentation
- Hypersonics
- Reflected Shock Tunnels
- Wind tunnel testing
Need help?
For help with finding experts, story ideas and media enquiries, contact our Media team: