Skip to menu Skip to content Skip to footer

2023

Other Outputs

NF-CSE-CIC-IDS2018

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2023). NF-CSE-CIC-IDS2018. The University of Queensland. (Dataset) doi: 10.48610/b9ed88b

NF-CSE-CIC-IDS2018

Featured

2022

Journal Article

Anomal-E: A self-supervised network intrusion detection system based on graph neural networks

Caville, Evan, Lo, Wai Weng, Layeghy, Siamak and Portmann, Marius (2022). Anomal-E: A self-supervised network intrusion detection system based on graph neural networks. Knowledge-Based Systems, 258 110030, 1-11. doi: 10.1016/j.knosys.2022.110030

Anomal-E: A self-supervised network intrusion detection system based on graph neural networks

2022

Conference Publication

Network intrusion detection system in a light bulb

Manocchio, Liam Daly, Layeghy, Siamak and Portmann, Marius (2022). Network intrusion detection system in a light bulb. 32nd International Telecommunication Networks and Applications Conference (ITNAC), Wellington, New Zealand, 30 November- 2 December 2022. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers. doi: 10.1109/itnac55475.2022.9998371

Network intrusion detection system in a light bulb

2022

Journal Article

Evaluating Standard Feature Sets Towards Increased Generalisability and Explainability of ML-Based Network Intrusion Detection

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2022). Evaluating Standard Feature Sets Towards Increased Generalisability and Explainability of ML-Based Network Intrusion Detection. Big Data Research, 30 100359, 1-9. doi: 10.1016/j.bdr.2022.100359

Evaluating Standard Feature Sets Towards Increased Generalisability and Explainability of ML-Based Network Intrusion Detection

2022

Journal Article

Cyber threat intelligence sharing scheme based on federated learning for network intrusion detection

Sarhan, Mohanad, Layeghy, Siamak, Moustafa, Nour and Portmann, Marius (2022). Cyber threat intelligence sharing scheme based on federated learning for network intrusion detection. Journal of Network and Systems Management, 31 (1) 3. doi: 10.1007/s10922-022-09691-3

Cyber threat intelligence sharing scheme based on federated learning for network intrusion detection

2022

Journal Article

HBFL: a hierarchical blockchain-based federated learning framework for collaborative IoT intrusion detection

Sarhan, Mohanad, Lo, Wai Weng, Layeghy, Siamak and Portmann, Marius (2022). HBFL: a hierarchical blockchain-based federated learning framework for collaborative IoT intrusion detection. Computers and Electrical Engineering, 103 108379, 1-17. doi: 10.1016/j.compeleceng.2022.108379

HBFL: a hierarchical blockchain-based federated learning framework for collaborative IoT intrusion detection

2022

Journal Article

Local reference free in-field calibration of low cost air pollution monitoring sensors

Ghosh, Sushmita, Das, Payali, De, Swades, Chatterjee, Shouri and Portmann, Marius (2022). Local reference free in-field calibration of low cost air pollution monitoring sensors. IEEE Transactions on Instrumentation and Measurement, 71 2517613, 1-13. doi: 10.1109/tim.2022.3203446

Local reference free in-field calibration of low cost air pollution monitoring sensors

2022

Conference Publication

Graph neural network-based android malware classification with jumping knowledge

Lo, Wai Weng, Layeghy, Siamak, Sarhan, Mohanad, Gallagher, Marcus and Portmann, Marius (2022). Graph neural network-based android malware classification with jumping knowledge. 2022 IEEE Conference on Dependable and Secure Computing (DSC), Edinburgh, United Kingdom, 22-24 June 2022. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers . doi: 10.1109/dsc54232.2022.9888878

Graph neural network-based android malware classification with jumping knowledge

Featured

2022

Conference Publication

E-GraphSAGE: a graph neural network based intrusion detection system for IoT

Lo, Wai Weng, Layeghy, Siamak, Sarhan, Mohanad, Gallagher, Marcus and Portmann, Marius (2022). E-GraphSAGE: a graph neural network based intrusion detection system for IoT. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 25-29 April 2022. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers . doi: 10.1109/noms54207.2022.9789878

E-GraphSAGE: a graph neural network based intrusion detection system for IoT

2022

Conference Publication

FDGATII: Fast Dynamic Graph Attention with Initial Residual and Identity

Kulatilleke, Gayan K., Portmann, Marius, Ko, Ryan and Chandra, Shekhar S. (2022). FDGATII: Fast Dynamic Graph Attention with Initial Residual and Identity. 35th Australasian Joint Conference on Artificial Intelligence: AI 2022, Perth, WA Australia, 5–8 December 2022. Cham, Switzerland: Springer. doi: 10.1007/978-3-031-22695-3_6

FDGATII: Fast Dynamic Graph Attention with Initial Residual and Identity

2022

Book Chapter

SCOR: a constraint programming approach to software defined networking

Layeghy, Siamak and Portmann, Marius (2022). SCOR: a constraint programming approach to software defined networking. Horizons in computer science research. Volume 22. (pp. 141-191) edited by Thomas S. Clary. New York, NY United States: Nova Science Publishers.

SCOR: a constraint programming approach to software defined networking

2021

Journal Article

Edge intelligence framework for data-driven dynamic priority sensing and transmission

Ghosh, Sushmita, De, Swades, Chatterjee, Shouri and Portmann, Marius (2021). Edge intelligence framework for data-driven dynamic priority sensing and transmission. IEEE Transactions on Green Communications and Networking, 6 (1), 376-390. doi: 10.1109/TGCN.2021.3136139

Edge intelligence framework for data-driven dynamic priority sensing and transmission

2021

Journal Article

Towards a standard feature set for network intrusion detection system datasets

Sarhan, Mohanad, Layeghy, Siamak and Portmann, Marius (2021). Towards a standard feature set for network intrusion detection system datasets. Mobile Networks and Applications, 27 (1), 357-370. doi: 10.1007/s11036-021-01843-0

Towards a standard feature set for network intrusion detection system datasets

2021

Conference Publication

FlowGAN - Synthetic Network Flow Generation using Generative Adversarial Networks

Manocchio, Liam Daly, Layeghy, Siamak and Portmann, Marius (2021). FlowGAN - Synthetic Network Flow Generation using Generative Adversarial Networks. International Conference on Computational Science and Engineering (CSE), Shenyang, China, 20-22 October 2021. Piscataway, NJ, United States: IEEE. doi: 10.1109/cse53436.2021.00033

FlowGAN - Synthetic Network Flow Generation using Generative Adversarial Networks

2021

Journal Article

Task scheduling for energy harvesting-based IoT: a survey and critical analysis

Sandhu, Muhammad Moid, Khalifa, Sara, Jurdak, Raja and Portmann, Marius (2021). Task scheduling for energy harvesting-based IoT: a survey and critical analysis. IEEE Internet of Things Journal, 8 (18) 9446528, 13825-13848. doi: 10.1109/JIOT.2021.3086186

Task scheduling for energy harvesting-based IoT: a survey and critical analysis

2021

Journal Article

Deep learning-based cattle behaviour classification using joint time-frequency data representation

Hosseininoorbin, Seyedehfaezeh, Layeghy, Siamak, Kusy, Brano, Jurdak, Raja, Bishop-Hurley, Greg J., Greenwood, Paul L and Portmann, Marius (2021). Deep learning-based cattle behaviour classification using joint time-frequency data representation. Computers and Electronics in Agriculture, 187 106241, 106241. doi: 10.1016/j.compag.2021.106241

Deep learning-based cattle behaviour classification using joint time-frequency data representation

2021

Conference Publication

Learning-based Smart Sensing for Energy-Sustainable WSN

Ghosh, Sushmita, De, Swades, Chatterjee, Shouri and Portmann, Marius (2021). Learning-based Smart Sensing for Energy-Sustainable WSN. doi: 10.1109/icc42927.2021.9500317

Learning-based Smart Sensing for Energy-Sustainable WSN

2021

Journal Article

Learning-based adaptive sensor selection framework for multi-sensing WSN

Ghosh, Sushmita, De, Swades, Chatterjee, Shouri and Portmann, Marius (2021). Learning-based adaptive sensor selection framework for multi-sensing WSN. IEEE Sensors Journal, 21 (12) 9388700, 13551-13563. doi: 10.1109/jsen.2021.3069264

Learning-based adaptive sensor selection framework for multi-sensing WSN

2021

Conference Publication

SolAR: energy positive human activity recognition using solar cells

Sandhu, Muhammad Moid, Khalifa, Sara, Geissdoerfer, Kai, Jurdak, Raja and Portmann, Marius (2021). SolAR: energy positive human activity recognition using solar cells. 2021 IEEE International Conference on Pervasive Computing and Communications (PerCom), Kassel, Germany, 22-26 March 2021. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers . doi: 10.1109/PERCOM50583.2021.9439128

SolAR: energy positive human activity recognition using solar cells

2021

Conference Publication

Scaling Spectrogram Data Representation for Deep Learning on Edge TPU

Hosseininoorbin, Seyedehfaezeh, Layeghy, Siamak, Kusy, Brano, Jurdak, Raja and Portmann, Marius (2021). Scaling Spectrogram Data Representation for Deep Learning on Edge TPU. 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Kassel, Germany, 22-26 March 2021. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers Inc.. doi: 10.1109/PerComWorkshops51409.2021.9431041

Scaling Spectrogram Data Representation for Deep Learning on Edge TPU