Skip to menu Skip to content Skip to footer

2010

Conference Publication

On the gradient-based algorithm for matrix factorization applied to dimensionality reduction

Nikulin, Vladimir and McLachlan, Geoffrey J. (2010). On the gradient-based algorithm for matrix factorization applied to dimensionality reduction. BIOINFORMATICS 2010: 1st International Conference on Bioinformatics, Valencia, Spain, 20-23 January 2010. Portugal: Institute for Systems and Technologies of Information, Control and Communication.

On the gradient-based algorithm for matrix factorization applied to dimensionality reduction

2010

Conference Publication

On relations between genes and metagenes obtained via gradient-based matrix factorization

Huang, Tian-Hsiang, Nikulin, Vladimir and McLachlan, Geoffrey J. (2010). On relations between genes and metagenes obtained via gradient-based matrix factorization. 2010 IEEE/ICME International Conference on Complex Medical Engineering, Gold Coast, Australia, 13-15 July 2010. Piscataway, United States: IEEE Computer Society. doi: 10.1109/ICCME.2010.5558880

On relations between genes and metagenes obtained via gradient-based matrix factorization

2010

Journal Article

Autoantibody profiling to identify biomarkers of key pathogenic pathways in mucinous ovarian cancer

Tang, Liangdan, Yang, Junzheng, Ng, Shu-Kay, Rodriguez, Noah, Choi, Pui-Wah, Vitonis, Allison, Wang, Kui, McLachlan, Geoffrey J., Caiazzo, Robert J., Liu, Brian C.-S., Welch, Brian C.-S., Cramer, Daniel W., Berkowitz, Ross S. and Ng, Shu-Wing (2010). Autoantibody profiling to identify biomarkers of key pathogenic pathways in mucinous ovarian cancer. European Journal of Cancer, 46 (1), 170-179. doi: 10.1016/j.ejca.2009.10.003

Autoantibody profiling to identify biomarkers of key pathogenic pathways in mucinous ovarian cancer

2010

Conference Publication

Clustering of High-Dimensional Data via Finite Mixture Models

McLachlan, Geoff J. and Baek, Jangsun (2010). Clustering of High-Dimensional Data via Finite Mixture Models. 32nd Annual Conference of the German-Classification-Society, Hamburg Germany, Jul 16-18, 2008. BERLIN: SPRINGER-VERLAG BERLIN. doi: 10.1007/978-3-642-01044-6_3

Clustering of High-Dimensional Data via Finite Mixture Models

2010

Conference Publication

RSCTC 2010 Discovery Challenge: Mining DNA microarray data for medical diagnosis and treatment

Wojnarski, Marcin, Janusz, Andrzej, Nyugen, Hung Son, Bazan, Jan, Luo, ChuanJiang, Chen, Ze, Hu, Feng, Wang, Guoyin, Guan, Lihe, Luo, Huan, Gao, Juan, Shen, Yuanxia, Nikulin, Vladimir, Huang, Tian-Hsiang, McLachlan, Geoffrey J., Bosnjak, Matko and Gamberger, Dragan (2010). RSCTC 2010 Discovery Challenge: Mining DNA microarray data for medical diagnosis and treatment. 7th International Conference on Rough Sets and Current Trends in Computing (RSCTC 2010), Warsaw, Poland, 28-30 June 2010. Heidelberg, Germany: Springer. doi: 10.1007/978-3-642-13529-3_3

RSCTC 2010 Discovery Challenge: Mining DNA microarray data for medical diagnosis and treatment

2009

Journal Article

A score test for assessing the cured proportion in the long-term survivor mixture model

Zhao, Yun, Lee, Andy H., Yau, Kelvin K. W., Burke, Valerie and McLachlan, Geoffrey J. (2009). A score test for assessing the cured proportion in the long-term survivor mixture model. Statistics In Medicine, 28 (27), 3454-3466. doi: 10.1002/sim.3696

A score test for assessing the cured proportion in the long-term survivor mixture model

2009

Journal Article

Microarray data analysis for differential expression: a tutorial

Suarez, E., Burguete, A. and McLachlan, G. J. (2009). Microarray data analysis for differential expression: a tutorial. Puerto Rico Health Sciences Journal, 28 (2), 89-104.

Microarray data analysis for differential expression: a tutorial

2009

Book Chapter

Statistical analysis on microarray data: selection of gene prognosis signatures

Le Cao, Kim-Anh and McLachlan, Geoffrey J. (2009). Statistical analysis on microarray data: selection of gene prognosis signatures. Computational biology: issues and applications in oncology. (pp. 55-76) edited by Tuan Pham. New York, United States: Springer. doi: 10.1007/978-1-4419-0811-7_3

Statistical analysis on microarray data: selection of gene prognosis signatures

2009

Book Chapter

Clustering methods for gene-expression data

Flack, L. K. and McLachlan, G. J. (2009). Clustering methods for gene-expression data. Handbook of Research on Systems Biology Applications in Medicine. (pp. 209-220) edited by Andriani Daskalaki. United States: IGI Global. doi: 10.4018/978-1-60566-076-9.ch011

Clustering methods for gene-expression data

2009

Conference Publication

Classification of imbalanced marketing data with balanced random sets

Nikulin, Vladimir and McLachlan, Geoffrey J. (2009). Classification of imbalanced marketing data with balanced random sets. AISTATS 2009, Clearwater Beach, FL, United States, 16-18 April 2009. Cambridge, MA, United States: M I T Press.

Classification of imbalanced marketing data with balanced random sets

2009

Conference Publication

Ensemble approach for the classification of imbalanced data

Nikulin, Vladimir, McLachlan, Geoffrey J. and Ng, Shu Kay (2009). Ensemble approach for the classification of imbalanced data. AI 2009: Advances in Artificial Intelligence, Melbourne, VIC, Australia, 1-4 December 2009. Berlin, Germany: Springer. doi: 10.1007/978-3-642-10439-8_30

Ensemble approach for the classification of imbalanced data

2009

Book Chapter

Model-based clustering

McLachlan, G. J. (2009). Model-based clustering. Comprehensive chemometrics: chemical and biochemical data analysis. (pp. 655-681) edited by Steven D. Brown, Roma Tauler and Beata Walczak. Oxford, U.K.: Elsevier Science. doi: 10.1016/B978-044452701-1.00068-5

Model-based clustering

2009

Book Chapter

EM

McLachlan, G. J. and Ng, S-K. (2009). EM. The Top Ten Algorithms in Data Mining. (pp. 93-115) edited by Wu, X. and Kumar, V.. Florida, United States: Chapman & Hall/CRC. doi: 10.1201/9781420089653-12

EM

2009

Journal Article

Classification of imbalanced marketing data with balanced random sets

Nikulin, Vladimir and McLachlan, Geoffrey J. (2009). Classification of imbalanced marketing data with balanced random sets. Journal of Machine Learning Research, 7, 89-100.

Classification of imbalanced marketing data with balanced random sets

2009

Conference Publication

Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data

Wang, Kui, Ng, Shu-Kay and McLachlan, Geoffrey J. (2009). Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data. 2009 Conference of Digital Image Computing: Techniques and Applications, Melbourne, Australia, 1-3 December 2009. Los Alamitos, California: IEEE Computer Society. doi: 10.1109/DICTA.2009.88

Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data

2009

Journal Article

Automated high-dimensional flow cytometric data analysis

Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T.-I., Maier, L. M., Baecher-Allan, C., McLachlan, G. J., Tamayo, P., Hafler, D. A., De Jager, P. L. and Mesirow, J. P. (2009). Automated high-dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences of the United States of America, 106 (21), 8519-8524. doi: 10.1073/pnas.0903028106

Automated high-dimensional flow cytometric data analysis

2009

Conference Publication

On a general method for matrix factorisation applied to supervised classification

Nikulin, Vladimir and McLachlan, Geoffrey J. (2009). On a general method for matrix factorisation applied to supervised classification. 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshops, Washington, D.C., U.S.A., 1-4 November 2009. Piscataway, NJ, United States: IEEE. doi: 10.1109/BIBMW.2009.5332135

On a general method for matrix factorisation applied to supervised classification

2009

Conference Publication

Regularised k-means clustering for dimension reduction applied to supervised classification

Nikulin, Vladimir and McLachlan, Geoffrey J. (2009). Regularised k-means clustering for dimension reduction applied to supervised classification. Sixth International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics 2009, Genova, Italy, 15-17 October 2009. Salerno, Italy: DMI Proceedings Series.

Regularised k-means clustering for dimension reduction applied to supervised classification

2008

Journal Article

Wallace's approach to unsupervised learning: The Snob program

Jorgensen, Murray A. and McLachlan, Geoffrey J. (2008). Wallace's approach to unsupervised learning: The Snob program. The Computer Journal, 51 (5), 571-578. doi: 10.1093/comjnl/bxm121

Wallace's approach to unsupervised learning: The Snob program

2008

Book Chapter

Clustering

McLachlan, G. J., Bean, R. W. and Ng, S.-K. (2008). Clustering. Bioinformatics, volume 2: Structure, function and applications. (pp. 423-439) edited by J. M. Keith. New Jersey, United States: Humana Press. doi: 10.1007/978-1-60327-429-6_22

Clustering