|
2010 Book Chapter Clustering of high-dimensional data via finite mixture modelsMcLachlan, Geoff J. and Baek, Jangsun (2010). Clustering of high-dimensional data via finite mixture models. Advances in Data Analysis, Business Intelligence: Proceedings of the 32nd Annual Conference of the Gesellschaft für Klassifikation e.V., Joint Conference with the British Classification Society (BCS) and the Dutch/Flemish Classification Society (VOC Helmut-Schmidt-University, Hamburg, July 16–18, 2008. (pp. 33-44) edited by Andreas Fink, Berthold Lausen, Wilfried Seidel and Alfred Ultsch. Heidelberg, Germany: Springer-Verlag. doi: 10.1007/978-3-642-01044-6 |
|
2010 Conference Publication Use of mixture models in multiple hypothesis testing with applications in bioinformaticsMcLachlan, Geoffrey J. and Wockner, Leesa (2010). Use of mixture models in multiple hypothesis testing with applications in bioinformatics. Classification as a Tool for Research (GfKl 2009), Dresden, Germany, 13-18 March 2009. doi: 10.1007/978-3-642-10745-0-18 |
|
2010 Conference Publication A comparative study of two matrix factorization methods applied to the classification of gene expression rateNikulin, Vladimir, Huang, Tian-Hsiang and McLachlan, Geoffrey J. (2010). A comparative study of two matrix factorization methods applied to the classification of gene expression rate. IEEE International Conference on Bioinformatics & Biomedicine, Hong Kong, 18-21 December 2010. Los Alamitos, CA, U.S.A.: IEEE Computer Society. doi: 10.1109/bibm.2010.5706640 |
|
2010 Conference Publication Identifying fibre bundles with regularized k-means clustering applied to grid-based dataNikulin, Vladimir and McLachlan, Geoffrey J. (2010). Identifying fibre bundles with regularized k-means clustering applied to grid-based data. 2010 International Joint Conference on Neural Networks (IJCNN 2010), Barcelona, Spain, 18-23 July 2010. United States: IEEE Computer Society. doi: 10.1109/IJCNN.2010.5596562 |
|
2010 Book Chapter Clustering of high-dimensional and correlated dataMcLachlan, Geoffrey J., Ng, Shu-Kay and Wang, K. (2010). Clustering of high-dimensional and correlated data. Data Analysis and Classification: Proceedings of the 6th Conference of the Classification and Data Analysis Group of the SocietàItaliana di Statistica, Macerata, Italy 12-14 September, 2007. (pp. 3-11) edited by Francesco Palumbo, Carlo Natale Lauro and Michael J. Greenacre. Berlin; Heidelberg, Germany: Springer - Verlag. doi: 10.1007/978-3-642-03739-9_1 |
|
2010 Book Chapter Use of mixture models in multiple hypothesis testing with applications in bioinformaticsMcLachlan, Geoffrey J. and Wockner, Leesa (2010). Use of mixture models in multiple hypothesis testing with applications in bioinformatics. Classification as a Tool for Research: Proceedings of the 11th IFCS Biennial Conference and 33rd Annual Conference of the Gesellschaft für Klassifikation. (pp. 177-184) edited by Hermann Locarek-Junge and Claus Weihs. Heidelberg, Germany: Springer-Verlag. doi: 10.1007/978-3-642-10745-0 |
|
2009 Journal Article A score test for assessing the cured proportion in the long-term survivor mixture modelZhao, Yun, Lee, Andy H., Yau, Kelvin K. W., Burke, Valerie and McLachlan, Geoffrey J. (2009). A score test for assessing the cured proportion in the long-term survivor mixture model. Statistics In Medicine, 28 (27), 3454-3466. doi: 10.1002/sim.3696 |
|
2009 Journal Article Automated high-dimensional flow cytometric data analysisPyne, S., Hu, X., Wang, K., Rossin, E., Lin, T.-I., Maier, L. M., Baecher-Allan, C., McLachlan, G. J., Tamayo, P., Hafler, D. A., De Jager, P. L. and Mesirow, J. P. (2009). Automated high-dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences of the United States of America, 106 (21), 8519-8524. doi: 10.1073/pnas.0903028106 |
|
2009 Conference Publication On a general method for matrix factorisation applied to supervised classificationNikulin, Vladimir and McLachlan, Geoffrey J. (2009). On a general method for matrix factorisation applied to supervised classification. 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshops, Washington, D.C., U.S.A., 1-4 November 2009. Piscataway, NJ, United States: IEEE. doi: 10.1109/BIBMW.2009.5332135 |
|
2009 Conference Publication Regularised k-means clustering for dimension reduction applied to supervised classificationNikulin, Vladimir and McLachlan, Geoffrey J. (2009). Regularised k-means clustering for dimension reduction applied to supervised classification. Sixth International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics 2009, Genova, Italy, 15-17 October 2009. Salerno, Italy: DMI Proceedings Series. |
|
2009 Journal Article Microarray data analysis for differential expression: a tutorialSuarez, E., Burguete, A. and McLachlan, G. J. (2009). Microarray data analysis for differential expression: a tutorial. Puerto Rico Health Sciences Journal, 28 (2), 89-104. |
|
2009 Book Chapter Statistical analysis on microarray data: selection of gene prognosis signaturesLe Cao, Kim-Anh and McLachlan, Geoffrey J. (2009). Statistical analysis on microarray data: selection of gene prognosis signatures. Computational biology: issues and applications in oncology. (pp. 55-76) edited by Tuan Pham. New York, United States: Springer. doi: 10.1007/978-1-4419-0811-7_3 |
|
2009 Book Chapter Clustering methods for gene-expression dataFlack, L. K. and McLachlan, G. J. (2009). Clustering methods for gene-expression data. Handbook of Research on Systems Biology Applications in Medicine. (pp. 209-220) edited by Andriani Daskalaki. United States: IGI Global. doi: 10.4018/978-1-60566-076-9.ch011 |
|
2009 Conference Publication Classification of imbalanced marketing data with balanced random setsNikulin, Vladimir and McLachlan, Geoffrey J. (2009). Classification of imbalanced marketing data with balanced random sets. AISTATS 2009, Clearwater Beach, FL, United States, 16-18 April 2009. Cambridge, MA, United States: M I T Press. |
|
2009 Conference Publication Ensemble approach for the classification of imbalanced dataNikulin, Vladimir, McLachlan, Geoffrey J. and Ng, Shu Kay (2009). Ensemble approach for the classification of imbalanced data. AI 2009: Advances in Artificial Intelligence, Melbourne, VIC, Australia, 1-4 December 2009. Berlin, Germany: Springer. doi: 10.1007/978-3-642-10439-8_30 |
|
2009 Book Chapter Model-based clusteringMcLachlan, G. J. (2009). Model-based clustering. Comprehensive chemometrics: chemical and biochemical data analysis. (pp. 655-681) edited by Steven D. Brown, Roma Tauler and Beata Walczak. Oxford, U.K.: Elsevier Science. doi: 10.1016/B978-044452701-1.00068-5 |
|
2009 Book Chapter EMMcLachlan, G. J. and Ng, S-K. (2009). EM. The Top Ten Algorithms in Data Mining. (pp. 93-115) edited by Wu, X. and Kumar, V.. Florida, United States: Chapman & Hall/CRC. doi: 10.1201/9781420089653-12 |
|
2009 Journal Article Classification of imbalanced marketing data with balanced random setsNikulin, Vladimir and McLachlan, Geoffrey J. (2009). Classification of imbalanced marketing data with balanced random sets. Journal of Machine Learning Research, 7, 89-100. |
|
2009 Conference Publication Multivariate skew t mixture models: applications to fluorescence-activated cell sorting dataWang, Kui, Ng, Shu-Kay and McLachlan, Geoffrey J. (2009). Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data. 2009 Conference of Digital Image Computing: Techniques and Applications, Melbourne, Australia, 1-3 December 2009. Los Alamitos, California: IEEE Computer Society. doi: 10.1109/DICTA.2009.88 |
|
2008 Journal Article Wallace's approach to unsupervised learning: The Snob programJorgensen, Murray A. and McLachlan, Geoffrey J. (2008). Wallace's approach to unsupervised learning: The Snob program. The Computer Journal, 51 (5), 571-578. doi: 10.1093/comjnl/bxm121 |