Skip to menu Skip to content Skip to footer

2010

Book Chapter

Clustering of high-dimensional data via finite mixture models

McLachlan, Geoff J. and Baek, Jangsun (2010). Clustering of high-dimensional data via finite mixture models. Advances in Data Analysis, Business Intelligence: Proceedings of the 32nd Annual Conference of the Gesellschaft für Klassifikation e.V., Joint Conference with the British Classification Society (BCS) and the Dutch/Flemish Classification Society (VOC Helmut-Schmidt-University, Hamburg, July 16–18, 2008. (pp. 33-44) edited by Andreas Fink, Berthold Lausen, Wilfried Seidel and Alfred Ultsch. Heidelberg, Germany: Springer-Verlag. doi: 10.1007/978-3-642-01044-6

Clustering of high-dimensional data via finite mixture models

2010

Conference Publication

Use of mixture models in multiple hypothesis testing with applications in bioinformatics

McLachlan, Geoffrey J. and Wockner, Leesa (2010). Use of mixture models in multiple hypothesis testing with applications in bioinformatics. Classification as a Tool for Research (GfKl 2009), Dresden, Germany, 13-18 March 2009. doi: 10.1007/978-3-642-10745-0-18

Use of mixture models in multiple hypothesis testing with applications in bioinformatics

2010

Conference Publication

A comparative study of two matrix factorization methods applied to the classification of gene expression rate

Nikulin, Vladimir, Huang, Tian-Hsiang and McLachlan, Geoffrey J. (2010). A comparative study of two matrix factorization methods applied to the classification of gene expression rate. IEEE International Conference on Bioinformatics & Biomedicine, Hong Kong, 18-21 December 2010. Los Alamitos, CA, U.S.A.: IEEE Computer Society. doi: 10.1109/bibm.2010.5706640

A comparative study of two matrix factorization methods applied to the classification of gene expression rate

2010

Conference Publication

Identifying fibre bundles with regularized k-means clustering applied to grid-based data

Nikulin, Vladimir and McLachlan, Geoffrey J. (2010). Identifying fibre bundles with regularized k-means clustering applied to grid-based data. 2010 International Joint Conference on Neural Networks (IJCNN 2010), Barcelona, Spain, 18-23 July 2010. United States: IEEE Computer Society. doi: 10.1109/IJCNN.2010.5596562

Identifying fibre bundles with regularized k-means clustering applied to grid-based data

2010

Book Chapter

Clustering of high-dimensional and correlated data

McLachlan, Geoffrey J., Ng, Shu-Kay and Wang, K. (2010). Clustering of high-dimensional and correlated data. Data Analysis and Classification: Proceedings of the 6th Conference of the Classification and Data Analysis Group of the SocietàItaliana di Statistica, Macerata, Italy 12-14 September, 2007. (pp. 3-11) edited by Francesco Palumbo, Carlo Natale Lauro and Michael J. Greenacre. Berlin; Heidelberg, Germany: Springer - Verlag. doi: 10.1007/978-3-642-03739-9_1

Clustering of high-dimensional and correlated data

2010

Book Chapter

Use of mixture models in multiple hypothesis testing with applications in bioinformatics

McLachlan, Geoffrey J. and Wockner, Leesa (2010). Use of mixture models in multiple hypothesis testing with applications in bioinformatics. Classification as a Tool for Research: Proceedings of the 11th IFCS Biennial Conference and 33rd Annual Conference of the Gesellschaft für Klassifikation. (pp. 177-184) edited by Hermann Locarek-Junge and Claus Weihs. Heidelberg, Germany: Springer-Verlag. doi: 10.1007/978-3-642-10745-0

Use of mixture models in multiple hypothesis testing with applications in bioinformatics

2009

Journal Article

A score test for assessing the cured proportion in the long-term survivor mixture model

Zhao, Yun, Lee, Andy H., Yau, Kelvin K. W., Burke, Valerie and McLachlan, Geoffrey J. (2009). A score test for assessing the cured proportion in the long-term survivor mixture model. Statistics In Medicine, 28 (27), 3454-3466. doi: 10.1002/sim.3696

A score test for assessing the cured proportion in the long-term survivor mixture model

2009

Journal Article

Automated high-dimensional flow cytometric data analysis

Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T.-I., Maier, L. M., Baecher-Allan, C., McLachlan, G. J., Tamayo, P., Hafler, D. A., De Jager, P. L. and Mesirow, J. P. (2009). Automated high-dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences of the United States of America, 106 (21), 8519-8524. doi: 10.1073/pnas.0903028106

Automated high-dimensional flow cytometric data analysis

2009

Conference Publication

On a general method for matrix factorisation applied to supervised classification

Nikulin, Vladimir and McLachlan, Geoffrey J. (2009). On a general method for matrix factorisation applied to supervised classification. 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshops, Washington, D.C., U.S.A., 1-4 November 2009. Piscataway, NJ, United States: IEEE. doi: 10.1109/BIBMW.2009.5332135

On a general method for matrix factorisation applied to supervised classification

2009

Conference Publication

Regularised k-means clustering for dimension reduction applied to supervised classification

Nikulin, Vladimir and McLachlan, Geoffrey J. (2009). Regularised k-means clustering for dimension reduction applied to supervised classification. Sixth International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics 2009, Genova, Italy, 15-17 October 2009. Salerno, Italy: DMI Proceedings Series.

Regularised k-means clustering for dimension reduction applied to supervised classification

2009

Journal Article

Microarray data analysis for differential expression: a tutorial

Suarez, E., Burguete, A. and McLachlan, G. J. (2009). Microarray data analysis for differential expression: a tutorial. Puerto Rico Health Sciences Journal, 28 (2), 89-104.

Microarray data analysis for differential expression: a tutorial

2009

Book Chapter

Statistical analysis on microarray data: selection of gene prognosis signatures

Le Cao, Kim-Anh and McLachlan, Geoffrey J. (2009). Statistical analysis on microarray data: selection of gene prognosis signatures. Computational biology: issues and applications in oncology. (pp. 55-76) edited by Tuan Pham. New York, United States: Springer. doi: 10.1007/978-1-4419-0811-7_3

Statistical analysis on microarray data: selection of gene prognosis signatures

2009

Book Chapter

Clustering methods for gene-expression data

Flack, L. K. and McLachlan, G. J. (2009). Clustering methods for gene-expression data. Handbook of Research on Systems Biology Applications in Medicine. (pp. 209-220) edited by Andriani Daskalaki. United States: IGI Global. doi: 10.4018/978-1-60566-076-9.ch011

Clustering methods for gene-expression data

2009

Conference Publication

Classification of imbalanced marketing data with balanced random sets

Nikulin, Vladimir and McLachlan, Geoffrey J. (2009). Classification of imbalanced marketing data with balanced random sets. AISTATS 2009, Clearwater Beach, FL, United States, 16-18 April 2009. Cambridge, MA, United States: M I T Press.

Classification of imbalanced marketing data with balanced random sets

2009

Conference Publication

Ensemble approach for the classification of imbalanced data

Nikulin, Vladimir, McLachlan, Geoffrey J. and Ng, Shu Kay (2009). Ensemble approach for the classification of imbalanced data. AI 2009: Advances in Artificial Intelligence, Melbourne, VIC, Australia, 1-4 December 2009. Berlin, Germany: Springer. doi: 10.1007/978-3-642-10439-8_30

Ensemble approach for the classification of imbalanced data

2009

Book Chapter

Model-based clustering

McLachlan, G. J. (2009). Model-based clustering. Comprehensive chemometrics: chemical and biochemical data analysis. (pp. 655-681) edited by Steven D. Brown, Roma Tauler and Beata Walczak. Oxford, U.K.: Elsevier Science. doi: 10.1016/B978-044452701-1.00068-5

Model-based clustering

2009

Book Chapter

EM

McLachlan, G. J. and Ng, S-K. (2009). EM. The Top Ten Algorithms in Data Mining. (pp. 93-115) edited by Wu, X. and Kumar, V.. Florida, United States: Chapman & Hall/CRC. doi: 10.1201/9781420089653-12

EM

2009

Journal Article

Classification of imbalanced marketing data with balanced random sets

Nikulin, Vladimir and McLachlan, Geoffrey J. (2009). Classification of imbalanced marketing data with balanced random sets. Journal of Machine Learning Research, 7, 89-100.

Classification of imbalanced marketing data with balanced random sets

2009

Conference Publication

Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data

Wang, Kui, Ng, Shu-Kay and McLachlan, Geoffrey J. (2009). Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data. 2009 Conference of Digital Image Computing: Techniques and Applications, Melbourne, Australia, 1-3 December 2009. Los Alamitos, California: IEEE Computer Society. doi: 10.1109/DICTA.2009.88

Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data

2008

Journal Article

Wallace's approach to unsupervised learning: The Snob program

Jorgensen, Murray A. and McLachlan, Geoffrey J. (2008). Wallace's approach to unsupervised learning: The Snob program. The Computer Journal, 51 (5), 571-578. doi: 10.1093/comjnl/bxm121

Wallace's approach to unsupervised learning: The Snob program