Skip to menu Skip to content Skip to footer

2010

Book Chapter

Use of mixture models in multiple hypothesis testing with applications in bioinformatics

McLachlan, Geoffrey J. and Wockner, Leesa (2010). Use of mixture models in multiple hypothesis testing with applications in bioinformatics. Classification as a Tool for Research: Proceedings of the 11th IFCS Biennial Conference and 33rd Annual Conference of the Gesellschaft für Klassifikation. (pp. 177-184) edited by Hermann Locarek-Junge and Claus Weihs. Heidelberg, Germany: Springer-Verlag. doi: 10.1007/978-3-642-10745-0

Use of mixture models in multiple hypothesis testing with applications in bioinformatics

2009

Journal Article

A score test for assessing the cured proportion in the long-term survivor mixture model

Zhao, Yun, Lee, Andy H., Yau, Kelvin K. W., Burke, Valerie and McLachlan, Geoffrey J. (2009). A score test for assessing the cured proportion in the long-term survivor mixture model. Statistics In Medicine, 28 (27), 3454-3466. doi: 10.1002/sim.3696

A score test for assessing the cured proportion in the long-term survivor mixture model

2009

Conference Publication

On a general method for matrix factorisation applied to supervised classification

Nikulin, Vladimir and McLachlan, Geoffrey J. (2009). On a general method for matrix factorisation applied to supervised classification. 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshops, Washington, D.C., U.S.A., 1-4 November 2009. Piscataway, NJ, United States: IEEE. doi: 10.1109/BIBMW.2009.5332135

On a general method for matrix factorisation applied to supervised classification

2009

Journal Article

Automated high-dimensional flow cytometric data analysis

Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T.-I., Maier, L. M., Baecher-Allan, C., McLachlan, G. J., Tamayo, P., Hafler, D. A., De Jager, P. L. and Mesirow, J. P. (2009). Automated high-dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences of the United States of America, 106 (21), 8519-8524. doi: 10.1073/pnas.0903028106

Automated high-dimensional flow cytometric data analysis

2009

Conference Publication

Regularised k-means clustering for dimension reduction applied to supervised classification

Nikulin, Vladimir and McLachlan, Geoffrey J. (2009). Regularised k-means clustering for dimension reduction applied to supervised classification. Sixth International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics 2009, Genova, Italy, 15-17 October 2009. Salerno, Italy: DMI Proceedings Series.

Regularised k-means clustering for dimension reduction applied to supervised classification

2009

Journal Article

Microarray data analysis for differential expression: a tutorial

Suarez, E., Burguete, A. and McLachlan, G. J. (2009). Microarray data analysis for differential expression: a tutorial. Puerto Rico Health Sciences Journal, 28 (2), 89-104.

Microarray data analysis for differential expression: a tutorial

2009

Book Chapter

Statistical analysis on microarray data: selection of gene prognosis signatures

Le Cao, Kim-Anh and McLachlan, Geoffrey J. (2009). Statistical analysis on microarray data: selection of gene prognosis signatures. Computational biology: issues and applications in oncology. (pp. 55-76) edited by Tuan Pham. New York, United States: Springer. doi: 10.1007/978-1-4419-0811-7_3

Statistical analysis on microarray data: selection of gene prognosis signatures

2009

Conference Publication

Classification of imbalanced marketing data with balanced random sets

Nikulin, Vladimir and McLachlan, Geoffrey J. (2009). Classification of imbalanced marketing data with balanced random sets. AISTATS 2009, Clearwater Beach, FL, United States, 16-18 April 2009. Cambridge, MA, United States: M I T Press.

Classification of imbalanced marketing data with balanced random sets

2009

Book Chapter

Clustering methods for gene-expression data

Flack, L. K. and McLachlan, G. J. (2009). Clustering methods for gene-expression data. Handbook of Research on Systems Biology Applications in Medicine. (pp. 209-220) edited by Andriani Daskalaki. United States: IGI Global. doi: 10.4018/978-1-60566-076-9.ch011

Clustering methods for gene-expression data

2009

Conference Publication

Ensemble approach for the classification of imbalanced data

Nikulin, Vladimir, McLachlan, Geoffrey J. and Ng, Shu Kay (2009). Ensemble approach for the classification of imbalanced data. AI 2009: Advances in Artificial Intelligence, Melbourne, VIC, Australia, 1-4 December 2009. Berlin, Germany: Springer. doi: 10.1007/978-3-642-10439-8_30

Ensemble approach for the classification of imbalanced data

2009

Book Chapter

Model-based clustering

McLachlan, G. J. (2009). Model-based clustering. Comprehensive chemometrics: chemical and biochemical data analysis. (pp. 655-681) edited by Steven D. Brown, Roma Tauler and Beata Walczak. Oxford, U.K.: Elsevier Science. doi: 10.1016/B978-044452701-1.00068-5

Model-based clustering

2009

Book Chapter

EM

McLachlan, G. J. and Ng, S-K. (2009). EM. The Top Ten Algorithms in Data Mining. (pp. 93-115) edited by Wu, X. and Kumar, V.. Florida, United States: Chapman & Hall/CRC. doi: 10.1201/9781420089653-12

EM

2009

Journal Article

Classification of imbalanced marketing data with balanced random sets

Nikulin, Vladimir and McLachlan, Geoffrey J. (2009). Classification of imbalanced marketing data with balanced random sets. Journal of Machine Learning Research, 7, 89-100.

Classification of imbalanced marketing data with balanced random sets

2009

Conference Publication

Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data

Wang, Kui, Ng, Shu-Kay and McLachlan, Geoffrey J. (2009). Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data. 2009 Conference of Digital Image Computing: Techniques and Applications, Melbourne, Australia, 1-3 December 2009. Los Alamitos, California: IEEE Computer Society. doi: 10.1109/DICTA.2009.88

Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data

2008

Journal Article

Wallace's approach to unsupervised learning: The Snob program

Jorgensen, Murray A. and McLachlan, Geoffrey J. (2008). Wallace's approach to unsupervised learning: The Snob program. The Computer Journal, 51 (5), 571-578. doi: 10.1093/comjnl/bxm121

Wallace's approach to unsupervised learning: The Snob program

2008

Journal Article

Professor Gopal Kanji's retirement as editor of Journal of Applied Statistics

Agrawal, M. C., Caudill, Steven B., Chakraborti, S., Draper, Norman, Dryden, Ian, Gani, Joe, Gilmour, Steven G., Govindarajulu, Z., Hand, David J., Franses, Philip Hans, Kacker, Raghu, Khamis, Harry, Khuri, Andre I., Lewis, Toby, Mardia, Kanti, McLachlan, Geoff, Naik, Dayanand, Prescott, Phil, Kumar, V. S. Sampath, Tomizawa, Sadao and Wynn, Henry (2008). Professor Gopal Kanji's retirement as editor of Journal of Applied Statistics. Journal of Applied Statistics, 35 (1), 1-8. doi: 10.1080/02664760701814495

Professor Gopal Kanji's retirement as editor of Journal of Applied Statistics

2008

Book

The EM algorithm and extensions

McLachlan, Geoffrey J. and Krishnan, Thriyambakam (2008). The EM algorithm and extensions. 2nd ed. Hoboken, NJ, United States: John Wiley & Sons. doi: 10.1002/9780470191613

The EM algorithm and extensions

2008

Book Chapter

Correcting for Selection Bias via Cross-Validation in the Classification of Microarray Data

McLachlan, G J., Chevelu, J. and Zhu, J. (2008). Correcting for Selection Bias via Cross-Validation in the Classification of Microarray Data. Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen. (pp. 364-376) edited by Balakrishnan, N., Pena, E. A. and Silvapulle, M. J.. United States: Institute of Mathematical Statistics. doi: 10.1214/193940307000000284

Correcting for Selection Bias via Cross-Validation in the Classification of Microarray Data

2008

Conference Publication

Clustering via mixture regression models with random effects

McLachlan, G. J., Ng, S. K. and Wang, K. (2008). Clustering via mixture regression models with random effects. 18th Symposium on Computational Statistics (COMSTAT 2008), Porto, Portugal, 24-29 August 2008. Heidelberg, Germany: Physica-Verlag,. doi: 10.1007/978-3-7908-2084-3_33

Clustering via mixture regression models with random effects

2008

Book Chapter

Clustering

McLachlan, G. J., Bean, R. W. and Ng, S.-K. (2008). Clustering. Bioinformatics, volume 2: Structure, function and applications. (pp. 423-439) edited by J. M. Keith. New Jersey, United States: Humana Press. doi: 10.1007/978-1-60327-429-6_22

Clustering