Skip to menu Skip to content Skip to footer
Professor Matthew Davis
Professor

Matthew Davis

Email: 
Phone: 
+61 7 334 69824

Overview

Background

Professor Matthew Davis is a theoretical and computational physicist. His main research area is non-equilibrium quantum many-body systems, and he particularly focuses on the platform of ultracold quantum gases. He particularly enjoys connecting theory with experiment, and has published several high impact papers with several international experimental groups.

His specific research areas include:

  • Non-equilibrium dynamics of Bose-Einstein condensates and other quantum gases;
  • Superfluidity, vortices, and quantum turbulence;
  • Dynamics of phase transitions and formation of topological defects;
  • Relaxation of isolated quantum systems and quantum thermodynamics;
  • Computational methods for quantum systems.

He did his undergraduate studies in physics at the University of Otago in Dunedin, New Zealand, before completing his PhD at the University of Oxford in 2001 under the supervision of Sir Professor Keith Burnett. He has been at the University of Queensland since 2002, and was promoted to Professor in 2013. He is currently a chief investigator in the ARC Centre of Excellence for Engineered Quantum Systems, and the ARC Centre of Excellence in Future Low-Energy Electronics Technologies.

Availability

Professor Matthew Davis is:
Available for supervision
Media expert

Fields of research

Qualifications

  • Bachelor (Honours) of Science, University of Otago
  • Doctor of Philosophy, University of Oxford

Research interests

  • Non-equilibrium dynamics of Bose-Einstein condensates and other quantum gases

  • Superfluidity, vortices, and quantum turbulence

  • Dynamics of phase transitions and formation of topological defects

  • Relaxation of isolated quantum systems and quantum thermodynamics

  • Computational methods for quantum systems

Works

Search Professor Matthew Davis’s works on UQ eSpace

143 works between 1997 and 2024

141 - 143 of 143 works

1998

Journal Article

Quantum kinetic theory of condensate growth: Comparison of experiment and theory

Gardiner, CW, Lee, MD, Ballagh, RJ, Davis, MJ and Zoller, P (1998). Quantum kinetic theory of condensate growth: Comparison of experiment and theory. Physical Review Letters, 81 (24), 5266-5269. doi: 10.1103/PhysRevLett.81.5266

Quantum kinetic theory of condensate growth: Comparison of experiment and theory

1997

Journal Article

Temporal characteristics and dynamics of gain-switched Cr:YAG lasers

McKinnie, IT and Davis, MJ (1997). Temporal characteristics and dynamics of gain-switched Cr:YAG lasers. Pure and Applied Optics, 6 (6), 759-772. doi: 10.1088/0963-9659/6/6/018

Temporal characteristics and dynamics of gain-switched Cr:YAG lasers

1997

Journal Article

Kinetics of Bose-Einstein condensation in a trap

Gardiner, CW, Zoller, P, Ballagh, RJ and Davis, MJ (1997). Kinetics of Bose-Einstein condensation in a trap. Physical Review Letters, 79 (10), 1793-1796. doi: 10.1103/PhysRevLett.79.1793

Kinetics of Bose-Einstein condensation in a trap

Funding

Current funding

  • 2025 - 2027
    Controlling superfluid transport with spatially engineered dissipation
    ARC Discovery Projects
    Open grant
  • 2023 - 2027
    Nonequilibrium vortex matter in a strongly interacting quantum fluid
    United States Army Research Office
    Open grant
  • 2022 - 2025
    Quantum-enhanced atomic gravimetry for improved sensing capabilities (AISRF led by ANU)
    Australian National University
    Open grant
  • 2018 - 2025
    ARC Centre of Excellence for Engineered Quantum Systems (EQuS2)
    ARC Centres of Excellence
    Open grant

Past funding

  • 2023
    A non-contact quantum weighbridge
    Commonwealth Department of Defence
    Open grant
  • 2020 - 2023
    Spin vortex dynamics in a ferromagnetic superfluid
    ARC Discovery Projects
    Open grant
  • 2019 - 2023
    Inertial sensing with a quantum gas phonon interferometer
    Commonwealth Defence Science and Technology Group
    Open grant
  • 2017 - 2022
    Nonequilibrium quantum dynamics in superfluid helium
    United States Army Research Office
    Open grant
  • 2017 - 2024
    ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET) (ARC Centre of Excellence administered by Monash University)
    Monash University
    Open grant
  • 2017 - 2018
    Increasing student engagement in active learning through feedback on pre-reading quizzes
    UQ Teaching Innovation Grants
    Open grant
  • 2016 - 2019
    Nonequilibrium states of polariton superfluids
    ARC Discovery Projects
    Open grant
  • 2015 - 2016
    Advanced Superfluid Physics Facility
    UQ Major Equipment and Infrastructure
    Open grant
  • 2015 - 2016
    Enhancing student buy-in: pre-reading and feedback in the flipped classroom
    Technology-Enhanced Learning Grants
    Open grant
  • 2011
    New-generation parallel-computing cluster for the mathematical and physical sciences
    UQ Major Equipment and Infrastructure
    Open grant
  • 2011 - 2013
    Quantum Equilibration
    ARC Discovery Projects
    Open grant
  • 2010 - 2014
    Ebb and flow of superfluids: Bose-Einstein condensates far from equilibrium
    ARC Discovery Projects
    Open grant
  • 2010 - 2012
    ResTeach 2010 0.2 FTE School of Mathematics and Physics
    Open grant
  • 2007 - 2009
    Spontaneous Formation of Vortices in Bose-Einstein Condensates
    UQ Foundation Research Excellence Awards - DVC(R) Funding
    Open grant
  • 2006 - 2008
    Superfluidity and Quantum Fluctuations in Bose-Einstein Condensates
    UQ New Staff Research Start-Up Fund
    Open grant
  • 2004 - 2006
    Nonlinear dynamics and chaos in Bose-Einstein Condensates on atom chips
    ARC Linkage International
    Open grant
  • 2003 - 2010
    ARC Centre of Excellence for Quantum-Atom Optics (ANU lead institution)
    ARC Centres of Excellence
    Open grant
  • 2003 - 2007
    Quantum Atom Optics and Single Atom Detection with Micro-Bose-Einstein Condensates
    ARC Discovery Projects
    Open grant

Supervision

Availability

Professor Matthew Davis is:
Available for supervision

Before you email them, read our advice on how to contact a supervisor.

Available projects

  • Superfluidity, nonequilibrium quantum systems, quantum thermodynamics

    I am happy to offer honours and PhD projects in all areas of my research interests. Please contact me for more details.

    • Non-equilibrium dynamics of Bose-Einstein condensates and other quantum gases;
    • Superfluidity, vortices, and quantum turbulence;
    • Dynamics of phase transitions and formation of topological defects;
    • Relaxation of isolated quantum systems and quantum thermodynamics;
    • Computational methods for quantum systems.

Supervision history

Current supervision

Completed supervision

Media

Enquiries

Contact Professor Matthew Davis directly for media enquiries about:

  • Bose-Einstein condensation
  • Computational physics
  • Physics - absolute zero
  • Physics - Bose-Einstein
  • Physics - quantum
  • Physics - superfluidity
  • Quantum physics
  • Superfluidity - physics
  • Theoretical physics
  • Unltra cold gases - physics

Need help?

For help with finding experts, story ideas and media enquiries, contact our Media team:

communications@uq.edu.au