Skip to menu Skip to content Skip to footer
Dr Xiaobo Zhu
Dr

Xiaobo Zhu

Email: 
Phone: 
+61 7 334 63803

Overview

Background

Xiaobo (Robert) Zhu is a Research Fellow at Australian Institute for Bioengineering and Nanotechnology, The University of Queensland. He attained his Ph.D. degree from UQ in 2018. His research focuses on the fundamental design and scalable synthesis of high-performance electrode materials, with a particular interest in low-cost, cobalt-free cathodes for lithium- and sodium-ion batteries. Dr Zhu serves as a key researcher on the University Trailblazer Program, working alongside the industry partner Livium Ltd. to advance cathode powder production.

Availability

Dr Xiaobo Zhu is:
Available for supervision

Qualifications

  • Doctor of Philosophy, The University of Queensland

Research impacts

Dr Zhu has been conducting research on functional materials for energy-related applications for over a decade, with a particular focus on cathode materials for rechargeable battery technologies. He has published oveer 70 peer-reviewed articles, including over 30 first/corresponding-author papers in top-tier journals such as Nat. Commun., Angew. Chem., Adv. Mater., Adv. Funct. Mater. and Chem. Sci. His research has been cited ~3,800 times, with an h-index of 33. Dr Zhu is also the inventor of 10 patents. His research has made significant contributions to the fundamental understanding of degradation mechanisms and the development of performance enhancement strategies for lithium- and sodium-ion batteries, attracting broad recognition from both academic and industrial communities.

Works

Search Professor Xiaobo Zhu’s works on UQ eSpace

75 works between 2014 and 2026

41 - 60 of 75 works

2022

Journal Article

The use of artemisia sphaerocephala Krasch. gum as an eco-friendly stabilizer to improve the mechanical properties of disintegrated carbonaceous mudstone

Wang, Hualei, Yang, Jin, Zha, Huanyi, Fu, Hongyuan, Zhu, Xiaobo and Jia, Chuankun (2022). The use of artemisia sphaerocephala Krasch. gum as an eco-friendly stabilizer to improve the mechanical properties of disintegrated carbonaceous mudstone. Construction and Building Materials, 316 125833, 125833. doi: 10.1016/j.conbuildmat.2021.125833

The use of artemisia sphaerocephala Krasch. gum as an eco-friendly stabilizer to improve the mechanical properties of disintegrated carbonaceous mudstone

2021

Journal Article

Recent progress in zinc-based redox flow batteries: a review

Wang, Guixiang, Zou, Haitao, Zhu, Xiaobo, Ding, Mei and Jia, Chuankun (2021). Recent progress in zinc-based redox flow batteries: a review. Journal of Physics D: Applied Physics, 55 (16) 163001, 163001. doi: 10.1088/1361-6463/ac4182

Recent progress in zinc-based redox flow batteries: a review

2021

Journal Article

Spent asphalt-derived mesoporous carbon for high-performance Li/Na/K-ion storage

Xie, Mingming, Zhu, Xiaobo, Li, Danqing, Xu, Zhizhao, Huang, Yingjia, Zha, Huanyi, Ding, Mei and Jia, Chuankun (2021). Spent asphalt-derived mesoporous carbon for high-performance Li/Na/K-ion storage. Journal of Power Sources, 514 230593, 230593. doi: 10.1016/j.jpowsour.2021.230593

Spent asphalt-derived mesoporous carbon for high-performance Li/Na/K-ion storage

2021

Journal Article

All-climate aluminum-ion batteries based on binder-free MOF-derived FeS2@C/CNT cathode

Hu, Yuxiang, Huang, Hongjiao, Yu, Deshuang, Wang, Xinyi, Li, Linlin, Hu, Han, Zhu, Xiaobo, Peng, Shengjie and Wang, Lianzhou (2021). All-climate aluminum-ion batteries based on binder-free MOF-derived FeS2@C/CNT cathode. Nano-Micro Letters, 13 (1) 159, 1-12. doi: 10.1007/s40820-021-00682-8

All-climate aluminum-ion batteries based on binder-free MOF-derived FeS2@C/CNT cathode

2021

Journal Article

A high-performance ammonia plasma-treated WO<sub>3</sub> @carbon felt electrode for vanadium redox flow batteries

Xiang, Weizhe, Xu, Jian, Zhang, Yiqiong, Fu, Hu, Zhu, Xiaobo, Lou, Xuechun, Qin, Chengpeng, Ding, Mei and Jia, Chuankun (2021). A high-performance ammonia plasma-treated WO3 @carbon felt electrode for vanadium redox flow batteries. Functional Materials Letters, 14 (07) 2143009. doi: 10.1142/s1793604721430098

A high-performance ammonia plasma-treated WO<sub>3</sub> @carbon felt electrode for vanadium redox flow batteries

2020

Journal Article

Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor

Zhang, Yu, Hu, Yuxiang, Wang, Zhiliang, Lin, Tongen, Zhu, Xiaobo, Luo, Bin, Hu, Han, Xing, Wei, Yan, Zifeng and Wang, Lianzhou (2020). Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor. Advanced Functional Materials, 30 (39) 2004172, 2004172. doi: 10.1002/adfm.202004172

Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor

2020

Journal Article

Advances in materials for all‐climate sodium‐ion batteries

Zhu, Xiaobo and Wang, Lianzhou (2020). Advances in materials for all‐climate sodium‐ion batteries. EcoMat, 2 (3) eom2.12043. doi: 10.1002/eom2.12043

Advances in materials for all‐climate sodium‐ion batteries

2020

Journal Article

MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors

Tang, Jiayong, Huang, Xia, Lin, Tongen, Qiu, Tengfei, Huang, Hengming, Zhu, Xiaobo, Gu, Qinfen, Luo, Bin and Wang, Lianzhou (2020). MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors. Energy Storage Materials, 26, 550-559. doi: 10.1016/j.ensm.2019.11.028

MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors

2020

Journal Article

Faster activation and slower capacity/voltage fading: a bifunctional urea treatment on lithium‐rich cathode materials

Lin, Tongen, Schulli, Tobias U., Hu, Yuxiang, Zhu, Xiaobo, Gu, Qinfen, Luo, Bin, Cowie, Bruce and Wang, Lianzhou (2020). Faster activation and slower capacity/voltage fading: a bifunctional urea treatment on lithium‐rich cathode materials. Advanced Functional Materials, 30 (13) 1909192, 1-10. doi: 10.1002/adfm.201909192

Faster activation and slower capacity/voltage fading: a bifunctional urea treatment on lithium‐rich cathode materials

2020

Journal Article

Two‐dimensional material‐functionalized separators for high‐energy‐density metal–sulfur and metal‐based batteries

Hu, Yuxiang, Zhu, Xiaobo and Wang, Lianzhou (2020). Two‐dimensional material‐functionalized separators for high‐energy‐density metal–sulfur and metal‐based batteries. ChemSusChem, 13 (6) cssc.201902758, 1366-1378. doi: 10.1002/cssc.201902758

Two‐dimensional material‐functionalized separators for high‐energy‐density metal–sulfur and metal‐based batteries

2020

Journal Article

Stabilizing high-voltage cathode materials for next-generation Li-ion batteries

Zhu, Xiaobo, Schulli, Tobias and Wang, Lianzhou (2020). Stabilizing high-voltage cathode materials for next-generation Li-ion batteries. Chemical Research in Chinese Universities, 36 (1), 24-32. doi: 10.1007/s40242-020-9103-8

Stabilizing high-voltage cathode materials for next-generation Li-ion batteries

2019

Journal Article

Hollow structured cathode materials for rechargeable batteries

Zhu, Xiaobo, Tang, Jiayong, Huang, Hengming, Lin, Tongen, Luo, Bin and Wang, Lianzhou (2019). Hollow structured cathode materials for rechargeable batteries. Science Bulletin, 65 (6), 496-512. doi: 10.1016/j.scib.2019.12.008

Hollow structured cathode materials for rechargeable batteries

2019

Journal Article

Sandwich‐like ultrathin TiS 2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium‐sulfur batteries

Huang, Xia, Tang, Jiayong, Luo, Bin, Knibbe, Ruth, Lin, Tongen, Hu, Han, Rana, Masud, Hu, Yuxiang, Zhu, Xiaobo, Gu, Qinfen, Wang, Dan and Wang, Lianzhou (2019). Sandwich‐like ultrathin TiS 2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium‐sulfur batteries. Advanced Energy Materials, 9 (32) 1901872, 1901872. doi: 10.1002/aenm.201901872

Sandwich‐like ultrathin TiS 2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium‐sulfur batteries

2019

Journal Article

Unlocking the potential of commercial carbon nanofibers as free-standing positive electrodes for flexible aluminum ion batteries

Hu, Yuxiang, Debnath, Shaikat, Hu, Han, Luo, Bin, Zhu, Xiaobo, Wang, Songcan, Hankel, Marlies, Searles, Debra J. and Wang, Lianzhou (2019). Unlocking the potential of commercial carbon nanofibers as free-standing positive electrodes for flexible aluminum ion batteries. Journal of Materials Chemistry A, 7 (25), 15123-15130. doi: 10.1039/c9ta04085d

Unlocking the potential of commercial carbon nanofibers as free-standing positive electrodes for flexible aluminum ion batteries

2018

Journal Article

A stable high-power Na2Ti3O7/LiNi0.5Mn1.5O4 Li-ion hybrid energy storage device

Zhu, Xiaobo, Sun, Dan, Luo, Bin, Hu, Yuxiang and Wang, Lianzhou (2018). A stable high-power Na2Ti3O7/LiNi0.5Mn1.5O4 Li-ion hybrid energy storage device. Electrochimica Acta, 284, 30-37. doi: 10.1016/j.electacta.2018.07.153

A stable high-power Na2Ti3O7/LiNi0.5Mn1.5O4 Li-ion hybrid energy storage device

2018

Other Outputs

Low-cost and high-performance cathode materials for rechargeable lithium- and sodium-ion batteries

Zhu, Xiaobo (2018). Low-cost and high-performance cathode materials for rechargeable lithium- and sodium-ion batteries. PhD Thesis, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland. doi: 10.14264/b1b3ccd

Low-cost and high-performance cathode materials for rechargeable lithium- and sodium-ion batteries

2018

Journal Article

New binder-free metal phosphide-carbon felt composite anodes for sodium-ion battery

Sun, Dan, Zhu, Xiaobo, Luo, Bin, Zhang, Yu, Tang, Yougen, Wang, Haiyan and Wang, Lianzhou (2018). New binder-free metal phosphide-carbon felt composite anodes for sodium-ion battery. Advanced Energy Materials, 8 (26) 1801197, 1801197. doi: 10.1002/aenm.201801197

New binder-free metal phosphide-carbon felt composite anodes for sodium-ion battery

2018

Journal Article

A new sodium iron phosphate as a stable high-rate cathode material for sodium ion batteries

Zhu, Xiaobo, Mochiku, Takashi, Fujii, Hiroki, Tang, Kaibin, Hu, Yuxiang, Huang, Zhenguo, Luo, Bin, Ozawa, Kiyoshi and Wang, Lianzhou (2018). A new sodium iron phosphate as a stable high-rate cathode material for sodium ion batteries. Nano Research, 11 (12), 1-9. doi: 10.1007/s12274-018-2139-0

A new sodium iron phosphate as a stable high-rate cathode material for sodium ion batteries

2018

Journal Article

Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries

Zhu, Xiaobo, Lin, Tongen, Manning, Eric, Zhang, Yuancheng, Yu, Mengmeng, Zuo, Bin and Wang, Lianzhou (2018). Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries. Journal of Nanoparticle Research, 20 (6) 160. doi: 10.1007/s11051-018-4235-1

Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries

2018

Journal Article

A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries

Hu, Yuxiang, Ye, Delai, Luo, Bin, Hu, Han, Zhu, Xiaobo, Wang, Songcan, Li, Linlin, Peng, Shengjie and Wang, Lianzhou (2018). A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Advanced Materials, 30 (2) 1703824, 1703824. doi: 10.1002/adma.201703824

A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries

Funding

Current funding

  • 2026
    Development of fast-chargeable and long-endurance graphite anode for lithium-ion batteries
    UQ Deputy Vice-Chancellor (Research) Strategic Initiatives
    Open grant

Supervision

Availability

Dr Xiaobo Zhu is:
Available for supervision

Looking for a supervisor? Read our advice on how to choose a supervisor.

Available projects

  • High-performance cathode materials for next-generation Li-ion batteries

Media

Enquiries

For media enquiries about Dr Xiaobo Zhu's areas of expertise, story ideas and help finding experts, contact our Media team:

communications@uq.edu.au