Skip to menu Skip to content Skip to footer

2022

Journal Article

Heterocyclic conjugated polymer nanoarchitectonics with synergistic redox‐active sites for high‐performance aluminium organic batteries

Peng, Xiyue, Xie, Yuan, Baktash, Ardeshir, Tang, Jiayong, Lin, Tongen, Huang, Xia, Hu, Yuxiang, Jia, Zhongfan, Searles, Debra J., Yamauchi, Yusuke, Wang, Lianzhou and Luo, Bin (2022). Heterocyclic conjugated polymer nanoarchitectonics with synergistic redox‐active sites for high‐performance aluminium organic batteries. Angewandte Chemie International Edition, 61 (25) e202203646, e202203646. doi: 10.1002/anie.202203646

Heterocyclic conjugated polymer nanoarchitectonics with synergistic redox‐active sites for high‐performance aluminium organic batteries

2022

Journal Article

Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries

Peng, Xiyue, Xie, Yuan, Baktash, Ardeshir, Tang, Jiayong, Lin, Tongen, Huang, Xia, Hu, Yuxiang, Jia, Zhongfan, Searles, Debra J., Yamauchi, Yusuke, Wang, Lianzhou and Luo, Bin (2022). Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries. Angewandte Chemie, 134 (25). doi: 10.1002/ange.202203646

Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries

2022

Journal Article

Nanosphere lithography: a versatile approach to develop transparent conductive films for optoelectronic applications

Qiu, Tengfei, Akinoglu, Eser Metin, Luo, Bin, Konarova, Muxina, Yun, Jung‐Ho, Gentle, Ian R. and Wang, Lianzhou (2022). Nanosphere lithography: a versatile approach to develop transparent conductive films for optoelectronic applications. Advanced Materials, 34 (19) 2103842, 2103842. doi: 10.1002/adma.202103842

Nanosphere lithography: a versatile approach to develop transparent conductive films for optoelectronic applications

2022

Book Chapter

Design of nanostructured sulfur cathodes for high-performance lithium–sulfur batteries

Rana, Masud, Huang, Xia and Luo, Bin (2022). Design of nanostructured sulfur cathodes for high-performance lithium–sulfur batteries. Lithium-sulfur batteries: materials, challenges, and applications. (pp. 425-452) edited by Ram K. Gupta, Tuan Anh Nguyen, Huaihe Song and Ghulam Yasin. Amsterdam, Netherlands: Elsevier. doi: 10.1016/b978-0-323-91934-0.00009-0

Design of nanostructured sulfur cathodes for high-performance lithium–sulfur batteries

2022

Journal Article

An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO​​​​​​​2 to ethanol

Huang, Xiaoxiong, Kong, Debin, Ma, Yingjie, Luo, Bin, Wang, Bin and Zhi, Linjie (2022). An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO​​​​​​​2 to ethanol. Fundamental Research, 3 (5), 786-795. doi: 10.1016/j.fmre.2021.08.021

An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO​​​​​​​2 to ethanol

2022

Book Chapter

Materials and technologies for Al-ion batteries

Peng, Xiyue, Wang, Lianzhou and Luo, Bin (2022). Materials and technologies for Al-ion batteries. Handbook of energy materials. (pp. 1-34) edited by Ram Gupta. Singapore: Springer. doi: 10.1007/978-981-16-4480-1_6-1

Materials and technologies for Al-ion batteries

2021

Journal Article

Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage

Tang, Jiayong, Peng, Xiyue, Lin, Tongen, Huang, Xia, Luo, Bin and Wang, Lianzhou (2021). Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage. eScience, 1 (2), 203-211. doi: 10.1016/j.esci.2021.12.004

Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage

2021

Journal Article

Enhanced safety and performance of high-voltage solid-state sodium battery through trilayer, multifunctional electrolyte design

Ran, Lingbing, Li, Ming, Cooper, Emily, Luo, Bin, Gentle, Ian, Wang, Lianzhou and Knibbe, Ruth (2021). Enhanced safety and performance of high-voltage solid-state sodium battery through trilayer, multifunctional electrolyte design. Energy Storage Materials, 41, 8-13. doi: 10.1016/j.ensm.2021.05.040

Enhanced safety and performance of high-voltage solid-state sodium battery through trilayer, multifunctional electrolyte design

2021

Journal Article

Stable interfaces in a sodium metal-free, solid-state sodium-ion battery with gradient composite electrolyte

Ran, Lingbing, Tao, Shiwei, Gentle, Ian, Luo, Bin, Li, Ming, Rana, MdMasud, Wang, Lianzhou and Knibbe, Ruth (2021). Stable interfaces in a sodium metal-free, solid-state sodium-ion battery with gradient composite electrolyte. ACS Applied Materials and Interfaces, 13 (33) acsami.1c09792, 39355-39362. doi: 10.1021/acsami.1c09792

Stable interfaces in a sodium metal-free, solid-state sodium-ion battery with gradient composite electrolyte

2021

Journal Article

PSi@SiOx/Nano-Ag composite derived from silicon cutting waste as high-performance anode material for Li-ion batteries

Xi, Fengshuo, Zhang, Zhao, Hu, Yuxiang, Li, Shaoyuan, Ma, Wenhui, Chen, Xiuhua, Wan, Xiaohan, Chong, CheeMun, Luo, Bin and Wang, Lianzhou (2021). PSi@SiOx/Nano-Ag composite derived from silicon cutting waste as high-performance anode material for Li-ion batteries. Journal of Hazardous Materials, 414 125480, 1-11. doi: 10.1016/j.jhazmat.2021.125480

PSi@SiOx/Nano-Ag composite derived from silicon cutting waste as high-performance anode material for Li-ion batteries

2021

Journal Article

Nanoconfined topochemical conversion from MXene to ultrathin non‐layered TiN nanomesh toward superior electrocatalysts for lithium‐sulfur batteries

Huang, Xia, Tang, Jiayong, Qiu, Tengfei, Knibbe, Ruth, Hu, Yuxiang, Schülli, Tobias U., Lin, Tongen, Wang, Zhiliang, Chen, Peng, Luo, Bin and Wang, Lianzhou (2021). Nanoconfined topochemical conversion from MXene to ultrathin non‐layered TiN nanomesh toward superior electrocatalysts for lithium‐sulfur batteries. Small, 17 (32) 2101360, 1-8. doi: 10.1002/smll.202101360

Nanoconfined topochemical conversion from MXene to ultrathin non‐layered TiN nanomesh toward superior electrocatalysts for lithium‐sulfur batteries

2021

Journal Article

Bridging localized electron states of pyrite-type CoS2 cocatalyst for activated solar H2 evolution

Huang, Hengming, Xue, Chen, Fang, Zhenggang, Wang, Zhiliang, Luo, Bin, Sun, Menglong, Zhou, Ling, Hu, Kan, Kou, Jiahui, Wang, Lianzhou and Lu, Chunhua (2021). Bridging localized electron states of pyrite-type CoS2 cocatalyst for activated solar H2 evolution. Nano Research, 15 (1), 1-7. doi: 10.1007/s12274-021-3457-1

Bridging localized electron states of pyrite-type CoS2 cocatalyst for activated solar H2 evolution

2021

Journal Article

ZIF-8 derived hollow carbon to trap polysulfides for high performance lithium–sulfur batteries

Rana, Masud, Kim, Jeonghum, Peng, Lingyi, Qiu, He, Kaiser, Rejaul, Ran, Lingbing, Hossain, Md. Shahriar A., Luo, Bin, Gentle, Ian, Wang, Lianzhou, Knibbe, Ruth and Yamauchi, Yusuke (2021). ZIF-8 derived hollow carbon to trap polysulfides for high performance lithium–sulfur batteries. Nanoscale, 13 (25), 11086-11092. doi: 10.1039/d1nr01674a

ZIF-8 derived hollow carbon to trap polysulfides for high performance lithium–sulfur batteries

2021

Journal Article

Influence of iron, aluminum, calcium, titanium and vanadium impurities removal from silicon based on Cu-catalyzed chemical leaching

Xi, Fengshuo, Zhang, Zhao, Li, Shaoyuan, Ma, Wenhui, Chen, Xiuhua, Chen, Zhengjie, Wei, Kuixian, Lei, Yun and Luo, Bin (2021). Influence of iron, aluminum, calcium, titanium and vanadium impurities removal from silicon based on Cu-catalyzed chemical leaching. Journal of Materials Research and Technology, 10, 502-511. doi: 10.1016/j.jmrt.2020.12.043

Influence of iron, aluminum, calcium, titanium and vanadium impurities removal from silicon based on Cu-catalyzed chemical leaching

2021

Journal Article

Interlayer space engineering of MXenes for electrochemical energy storage applications

Tang, Jiayong, Huang, Xia, Qiu, Tengfei, Peng, Xiyue, Wu, Tingting, Wang, Lei, Luo, Bin and Wang, Lianzhou (2021). Interlayer space engineering of MXenes for electrochemical energy storage applications. Chemistry – A European Journal, 27 (6) chem.202002283, 1921-1940. doi: 10.1002/chem.202002283

Interlayer space engineering of MXenes for electrochemical energy storage applications

2021

Journal Article

Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution

Xiao, Mu, Jiao, Yalong, Luo, Bin, Wang, Songcan, Chen, Peng, Lyu, Miaoqiang, Du, Aijun and Wang, Lianzhou (2021). Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. Nano Research, 16 (4), 1-7. doi: 10.1007/s12274-021-3897-7

Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution

2020

Journal Article

Sulfur-based redox chemistry for electrochemical energy storage

Huang, Xia, Luo, Bin, Chen, Peng, Searles, Debra J., Wang, Dan and Wang, Lianzhou (2020). Sulfur-based redox chemistry for electrochemical energy storage. Coordination Chemistry Reviews, 422 213445, 213445. doi: 10.1016/j.ccr.2020.213445

Sulfur-based redox chemistry for electrochemical energy storage

2020

Journal Article

High-performance porous silicon/nanosilver anodes from industrial low-grade silicon for lithium-ion batteries

Xi, Fengshuo, Zhang, Zhao, Wan, Xiaohan, Li, Shaoyuan, Ma, Wenhui, Chen, Xiuhua, Chen, Ran, Luo, Bin and Wang, Lianzhou (2020). High-performance porous silicon/nanosilver anodes from industrial low-grade silicon for lithium-ion batteries. ACS Applied Materials and Interfaces, 12 (43), 49080-49089. doi: 10.1021/acsami.0c14157

High-performance porous silicon/nanosilver anodes from industrial low-grade silicon for lithium-ion batteries

2020

Journal Article

Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries

Rana, Masud, AL-Fayaad, Hydar A., Luo, Bin, Lin, Tongen, Ran, Lingbing, Clegg, Jack K., Gentle, Ian and Knibbe, Ruth (2020). Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy, 75 105009, 105009. doi: 10.1016/j.nanoen.2020.105009

Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries

2020

Journal Article

Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor

Zhang, Yu, Hu, Yuxiang, Wang, Zhiliang, Lin, Tongen, Zhu, Xiaobo, Luo, Bin, Hu, Han, Xing, Wei, Yan, Zifeng and Wang, Lianzhou (2020). Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor. Advanced Functional Materials, 30 (39) 2004172, 2004172. doi: 10.1002/adfm.202004172

Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor