Skip to menu Skip to content Skip to footer

2025

Book Chapter

Leveraging Gradient Information for Out-of-Domain Performance Estimations

Khramtsova, Ekaterina, Baktashmotlagh, Mahsa, Zuccon, Guido, Wang, Xi and Salzmann, Mathieu (2025). Leveraging Gradient Information for Out-of-Domain Performance Estimations. Lecture Notes in Computer Science. (pp. 306-321) Cham: Springer Nature Switzerland. doi: 10.1007/978-3-032-06106-5_18

Leveraging Gradient Information for Out-of-Domain Performance Estimations

2025

Book Chapter

Spectral Distribution Alignment for Enhanced Generalization in Regression

Guo, Kaiyu, Wang, Zijian, Lovell, Brian C. and Baktashmotlagh, Mahsa (2025). Spectral Distribution Alignment for Enhanced Generalization in Regression. Lecture Notes in Computer Science. (pp. 272-288) Cham: Springer Nature Switzerland. doi: 10.1007/978-3-032-06106-5_16

Spectral Distribution Alignment for Enhanced Generalization in Regression

2020

Book Chapter

On minimum discrepancy estimation for deep domain adaptation

Rahman, Mohammad Mahfujur, Fookes, Clinton, Baktashmotlagh, Mahsa and Sridharan, Sridha (2020). On minimum discrepancy estimation for deep domain adaptation. Domain adaptation for visual understanding. (pp. 81-94) edited by Richa Singh, Mayank Vatsa, Vishal M. Patel and Nalini Ratha. Cham, Switzerland: Springer International Publishing. doi: 10.1007/978-3-030-30671-7_6

On minimum discrepancy estimation for deep domain adaptation

2017

Book Chapter

Learning Domain Invariant Embeddings by Matching Distributions

Baktashmotlagh, Mahsa, Harandi, Mehrtash and Salzmann, Mathieu (2017). Learning Domain Invariant Embeddings by Matching Distributions. Domain Adaptation in Computer Vision Applications. (pp. 95-114) Cham, Switzerland: Springer. doi: 10.1007/978-3-319-58347-1_5

Learning Domain Invariant Embeddings by Matching Distributions