Skip to menu Skip to content Skip to footer

2020

Conference Publication

Trading personalization for accuracy: data debugging in collaborative filtering

Chen, Long, Yao, Yuan, Xu, Feng, Xu, Miao and Tong, Hanghang (2020). Trading personalization for accuracy: data debugging in collaborative filtering. Conference on Neural Information Processing Systems, Vancouver, Canada, 6-12 December 2020. Maryland Heights, MO, United States: Morgan Kaufmann Publishers.

Trading personalization for accuracy: data debugging in collaborative filtering

2019

Conference Publication

Clipped Matrix Completion: A Remedy for Ceiling Effects

Teshima, Takeshi, Xu, Miao, Sato, Issei and Sugiyama, Masashi (2019). Clipped Matrix Completion: A Remedy for Ceiling Effects. Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI United States, 27 January – 1 February 2019. PALO ALTO: Association for the Advancement of Artificial Intelligence (AAAI). doi: 10.1609/aaai.v33i01.33015151

Clipped Matrix Completion: A Remedy for Ceiling Effects

2018

Conference Publication

Co-teaching: Robust training of deep neural networks with extremely noisy labels

Han, Bo, Yao, Quanming, Yu, Xingrui, Niu, Gang, Xu, Miao, Hu, Weihua, Tsang, Ivor W. and Sugiyama, Masashi (2018). Co-teaching: Robust training of deep neural networks with extremely noisy labels. 32nd Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2-8 December, 2018. Maryland Heights, MO, United States: Morgan Kaufmann Publishers. doi: 10.5555/3327757.3327944

Co-teaching: Robust training of deep neural networks with extremely noisy labels

2018

Conference Publication

Active Feature Acquisition with Supervised Matrix Completion

Huang, Sheng-Jun, Xu, Miao, Xie, Ming-Kun, Sugiyama, Masashi, Niu, Gang and Chen, Songcan (2018). Active Feature Acquisition with Supervised Matrix Completion. 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, July 2018. New York, NY United States: ACM. doi: 10.1145/3219819.3220084

Active Feature Acquisition with Supervised Matrix Completion

2017

Journal Article

Kernel method for matrix completion with side information and its application in multi-label learning

Xu, Miao and Zhou, Zhi-Hua (2017). Kernel method for matrix completion with side information and its application in multi-label learning. Scientia Sinica Informationis, 48 (1), 47-59. doi: 10.1360/n112016-00279

Kernel method for matrix completion with side information and its application in multi-label learning

2017

Conference Publication

Incomplete Label Distribution Learning

Xu, Miao and Zhou, Zhi-Hua (2017). Incomplete Label Distribution Learning. Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, VIC Australia, 19-25 August 2017. Melbourne, VIC Australia: International Joint Conferences on Artificial Intelligence Organization. doi: 10.24963/ijcai.2017/443

Incomplete Label Distribution Learning

2015

Conference Publication

CUR algorithm for partially observed matrices

Xu, Miao, Jin, Rong and Zhou, Zhi-Hua (2015). CUR algorithm for partially observed matrices. 32nd International Conference on Machine Learning, Lille, France, 7-9 July, 2015. San Diego, CA, United States: JMLR.

CUR algorithm for partially observed matrices

2013

Conference Publication

Multi-label learning with PRO LOSS

Xu, Miao, Li, Yu-Feng and Zhou, Zhi-Hua (2013). Multi-label learning with PRO LOSS. AAAI-13: Twenty-Seventh Conference on Artificial Intelligence, Bellevue, WA USA, 14-18 July 2013.

Multi-label learning with PRO LOSS

2013

Conference Publication

Speedup matrix completion with side information: application to multi-label learning

Xu, Miao, Jin, Rong and Zhou, Zhi-Hua (2013). Speedup matrix completion with side information: application to multi-label learning. NIPS'13: Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV USA, 5-10 December 2013. Maryland Heights, MO USA: Morgan Kaufmann Publishers.

Speedup matrix completion with side information: application to multi-label learning